skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2326146

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. The mental health crisis in the United States spotlights the need for more scalable training for mental health workers. While present-day AI systems have sparked hope for addressing this problem, we must not be too quick to incorporate or solely focus on technological advancements. We must ask empirical questions about how to ethically collaborate with and integrate autonomous AI into the clinical workplace. For these Human-Autonomy Teams (HATs), poised to make the leap into the mental health domain, special consideration around the construct of trust is in order. A reflexive look toward the multidisciplinary nature of such HAT projects illuminates the need for a deeper dive into varied stakeholder considerations of ethics and trust. In this paper, we investigate the impact of domain---and the ranges of expertise within domains---on ethics- and trust-related considerations for HATs in mental health. We outline our engagement of 23 participants in two speculative activities: design fiction and factorial survey vignettes. Grounded by a video storyboard prototype, AI- and Psychotherapy-domain experts and novices alike imagined TEAMMAIT, a prospective AI system for psychotherapy training. From our inductive analysis emerged 10 themes surrounding ethics, trust, and collaboration. Three can be seen as substantial barriers to trust and collaboration, where participants imagined they would not work with an AI teammate that didn't meet these ethical standards. Another five of the themes can be seen as interrelated, context-dependent, and variable factors of trust that impact collaboration with an AI teammate. The final two themes represent more explicit engagement with the prospective role of an AI teammate in psychotherapy training practices. We conclude by evaluating our findings through the lens of Mayer et al.'s Integrative Model of Organizational Trust to discuss the risks of HATs and adapt models of ability-, benevolence-, and integrity-based trust. These updates motivate implications for the design and integration of HATs in mental health work. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026
  3. Free, publicly-accessible full text available April 25, 2026
  4. Free, publicly-accessible full text available March 3, 2026