Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Beginner musicians often struggle to identify specific errors in their performances, such as playing incorrect notes or rhythms. There are two limitations in existing tools for music error detection: (1) Existing approaches rely on automatic alignment; therefore, they are prone to errors caused by small deviations between alignment targets; (2) There is insufficient data to train music error detection models, resulting in over-reliance on heuristics. To address (1), we propose a novel transformer model, Polytune, that takes audio inputs and outputs annotated music scores. This model can be trained end-to-end to implicitly align and compare performance audio with music scores through latent space representations. To address (2), we present a novel data generation technique capable of creating large-scale synthetic music error datasets. Our approach achieves a 64.1% average Error Detection F1 score, improving upon prior work by 40 percentage points across 14 instruments. Additionally, our model can handle multiple instruments compared with existing transcription methods repurposed for music error detection.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Incorporating emotional design, user-centered design, music education insights, and cognitive load management, this study investigates the integration of AI into cello learning. Through competitive analysis and qualitative user research, including detailed observations and interviews, we introduce interaction design solutions of “Goal-Oriented Three Practice Modes”, “Interactive Learning”, and “Personalized Practice Plans”. This research aims to make classical music education more efficient, accessible and personalized, addressing economic and geographical limitations. By integrating technological innovations, we seek to enrich the classical music tradition, enhance the cello learning experience, and expand the community for cello learners and enthusiasts.more » « less
-
Music is one of the most universal forms of communication and entertainment across cultures. This can largely be credited to the sense of synesthesia, or the combining of senses. Based on this concept of synesthesia, we want to explore whether generative AI can create visual representations for music. The aim is to inspire the user’s imagination and enhance the user experience when enjoying music. Our approach has the following steps: (a) Music is analyzed and classified into multiple dimensions (including instruments, emotion, tempo, pitch range, harmony, and dynamics) to produce textual descriptions. (b) The texts form inputs of machine models that can predict the genre of the input audio. (c) The prompts are inputs of generative machine models to create visual representations. The visual representations are continuously updated as the music plays, ensuring that the visual effects aptly mirror the musical changes. A comprehensive user study with 88 users confirms that our approach is able to generate visual art reflecting the music pieces. From a list of images covering both abstract images and realistic images, users considered that our system-generated images can better represent pieces of music than human-chosen images. It suggests that generative arts can become a promising method to enhance users' listening experience while enjoying music. Our method provides a new approach to visualize music and to enjoy music through generative arts.more » « less
An official website of the United States government

Full Text Available