skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2327030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Ecosystem states are often influenced by both concurrent and antecedent environmental drivers. However, the relative importance of antecedent conditions varies within and among ecosystems. Here, we analysed long‐term depth‐profile data from 382 temperate lakes across 10 countries to assess how differential changes in spring versus summer air temperature mediate summer water quality. We found that summer bottom‐water conditions were more associated with spring air temperatures, while surface‐water conditions were more associated with summer air temperatures. The relative influence of spring versus summer air temperature was mediated by lake morphometry, stratification and latitude. Across these lakes, summer air temperatures have increased more rapidly than spring air temperatures, potentially contributing to a growing thermal difference between surface and bottom waters (median = +0.5°C/decade). Consequently, our results demonstrate that predicting the ecological impacts of climate change may require considering spatial differences in ecological memory within ecosystems. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Abstract While there is a diversity of approaches for modeling phytoplankton blooms, their accuracy in predicting the onset and manifestation of a bloom is still lagging behind what is needed to support effective management. We outline a framework that integrates trait theory and ecosystem modeling to improve bloom prediction. This framework builds on the concept that the phenology of blooms is determined by the dynamic interaction between the environment and traits within the phytoplankton community. Phytoplankton groups exhibit a collection of traits that govern the interplay of processes that ultimately control the phases of bloom initiation, maintenance, and collapse. An example of process‐trait mapping is used to demonstrate a more consistent approach to bloom model parameterization that allows better alignment with models and laboratory‐ and ecosystem‐scale datasets. Further approaches linking statistical‐mechanistic models to trait parameter databases are discussed as a way to help optimize models to better simulate bloom phenology and allow them to support a wider range of management needs. 
    more » « less
  3. Abstract Lakes play a significant role in the global carbon cycle, acting as sources and sinks of carbon dioxide (CO2). In situ measurements of CO2flux (FCO2) from lakes have generally been collected during daylight, despite indications of significant diel variability. This introduces bias when scaling up to whole‐lake annual aquatic carbon budgets. We conducted an international sampling program to ascertain the extent of diel variation in FCO2across lakes. We sampled 21 lakes over 41 campaigns and measured FCO2at 4‐h intervals over a full diel cycle. Rates of FCO2ranged from −3.16 to 4.39 mmol m−2 h−1. Integrated over a day, FCO2ranged from −381.68 to 878.49 mg C m−2d−1(mean = 76.54) across campaigns. We identified three characteristic diel patterns in FCO2related to trophic status and show that for half of the campaigns, daily flux estimates were biased by > 50% if based on a single (daytime) measurement. 
    more » « less
  4. Abstract Phytoplankton blooms create harmful toxins, scums, and taste and odor compounds and thus pose a major risk to drinking water safety. Climate and land use change are increasing the frequency and severity of blooms, motivating the development of new approaches for preemptive, rather than reactive, water management. While several real-time phytoplankton forecasts have been developed to date, none are both automated and quantify uncertainty in their predictions, which is critical for manager use. In response to this need, we outline a framework for developing the first automated, real-time lake phytoplankton forecasting system that quantifies uncertainty, thereby enabling managers to adapt operations and mitigate blooms. Implementation of this system calls for new, integrated ecosystem and statistical models; automated cyberinfrastructure; effective decision support tools; and training for forecasters and decision makers. We provide a research agenda for the creation of this system, as well as recommendations for developing real-time phytoplankton forecasts to support management. 
    more » « less
  5. Abstract Despite the growing use of Aquatic Ecosystem Models for lake modeling, there is currently no widely applicable framework for their configuration, calibration, and evaluation. Calibration is generally based on direct data comparison of observed versus modeled state variables using standard statistical techniques, however, this approach may not give a complete picture of the model's ability to capture system‐scale behavior that is not easily perceivable in observations, but which may be important for resource management. The aim of this study is to compare the performance of “naïve” calibration and a “system‐inspired” calibration, an approach that augments the standard state‐based calibration with a range of system‐inspired metrics (e.g., thermocline depth, metalimnetic oxygen minima), to increase the coherence between the simulated and natural ecosystems. A coupled physical‐biogeochemical model was applied to a focal site to simulate two key state‐variables: water temperature and dissolved oxygen. The model was calibrated according to the new system‐inspired modeling convention, using formal calibration techniques. There was an improvement in the simulation using parameters optimized on the additional metrics, which helped to reduce uncertainty predicting aspects of the system relevant to reservoir management, such as the occurrence of the metalimnetic oxygen minima. Extending the use of system‐inspired metrics when calibrating models has the potential to improve model fidelity for capturing more complex ecosystem dynamics. 
    more » « less
  6. Abstract Zooplankton play an integral role as indicators of water quality in freshwater ecosystems, but exhibit substantial variability in their density and community composition over space and time. This variability in zooplankton community structure may be driven by multiple factors, including taxon-specific migration behavior in response to environmental conditions. Many studies have highlighted substantial variability in zooplankton communities across spatial and temporal scales, but the relative importance of space vs. time in structuring zooplankton community dynamics is less understood. In this study, we quantified spatial (a littoral vs. a pelagic site) and temporal (hours to years) variability in zooplankton community structure in a eutrophic reservoir in southwestern Virginia, USA. We found that zooplankton community structure was more variable among sampling dates over 3 years than among sites or hours of the day, which was associated with differences in water temperature, chlorophyll a, and nutrient concentrations. Additionally, we observed high variability in zooplankton migration behavior, though a slightly greater magnitude of DHM vs. DVM during each sampling date, likely due to changing environmental conditions. Ultimately, our work underscores the need to continually integrate spatial and temporal monitoring to understand patterns of zooplankton community structure and behavior in freshwater ecosystems. 
    more » « less
  7. Abstract Temperate reservoirs and lakes worldwide are experiencing decreases in ice cover, which will likely alter the net balance of gross primary production (GPP) and respiration (R) in these ecosystems. However, most metabolism studies to date have focused on summer dynamics, thereby excluding winter dynamics from annual metabolism budgets. To address this gap, we analyzed 6 years of year‐round high‐frequency dissolved oxygen data to estimate daily rates of net ecosystem production (NEP), GPP, and R in a eutrophic, dimictic reservoir that has intermittent ice cover. Over 6 years, the reservoir exhibited slight heterotrophy during both summer and winter. We found winter and summer metabolism rates to be similar: summer NEP had a median rate of −0.06 mg O2L−1 day−1(range: −15.86 to 3.20 mg O2L−1 day−1), while median winter NEP was −0.02 mg O2L−1 day−1(range: −8.19 to 0.53 mg O2L−1 day−1). Despite large differences in the duration of ice cover among years, there were minimal differences in NEP among winters. Overall, the inclusion of winter data had a limited effect on annual metabolism estimates in a eutrophic reservoir, likely due to short winter periods in this reservoir (ice durations 0–35 days), relative to higher‐latitude lakes. Our work reveals a smaller difference between winter and summer NEP than in lakes with continuous ice cover. Ultimately, our work underscores the importance of studying full‐year metabolism dynamics in a range of aquatic ecosystems to help anticipate the effects of declining ice cover across lakes worldwide. 
    more » « less
  8. Abstract Water temperature forecasting in lakes and reservoirs is a valuable tool to manage crucial freshwater resources in a changing and more variable climate, but previous efforts have yet to identify an optimal modeling approach. Here, we demonstrate the first multi‐model ensemble (MME) reservoir water temperature forecast, a forecasting method that combines individual model strengths in a single forecasting framework. We developed two MMEs: a three‐model process‐based MME and a five‐model MME that includes process‐based and empirical models to forecast water temperature profiles at a temperate drinking water reservoir. We found that the five‐model MME improved forecast performance by 8%–30% relative to individual models and the process‐based MME, as quantified using an aggregated probabilistic skill score. This increase in performance was due to large improvements in forecast bias in the five‐model MME, despite increases in forecast uncertainty. High correlation among the process‐based models resulted in little improvement in forecast performance in the process‐based MME relative to the individual process‐based models. The utility of MMEs is highlighted by two results: (a) no individual model performed best at every depth and horizon (days in the future), and (b) MMEs avoided poor performances by rarely producing the worst forecast for any single forecasted period (<6% of the worst ranked forecasts over time). This work presents an example of how existing models can be combined to improve water temperature forecasting in lakes and reservoirs and discusses the value of utilizing MMEs, rather than individual models, in operational forecasts. 
    more » « less
  9. Abstract Water level drawdowns are increasingly common in lakes and reservoirs worldwide as a result of both climate change and water management. Drawdowns can have direct effects on physical properties of a waterbody (e.g., by altering stratification and light dynamics), which can interact to modify the waterbody's biology and chemistry. However, the ecosystem‐level effects of drawdown remain poorly characterized in small, thermally stratified reservoirs, which are common in many regions of the world. Here, we intensively monitored a small eutrophic reservoir for 2 years, including before, during, and after a month‐long drawdown that reduced total reservoir volume by 36%. During drawdown, stratification strength (maximum buoyancy frequency) and surface phosphate concentrations both increased, contributing to a substantial surface phytoplankton bloom. The peak in phytoplankton biomass was followed by cascading changes in surface water chemistry associated with bloom degradation, with sequential peaks in dissolved organic carbon, dissolved carbon dioxide, and ammonium concentrations that were up to an order of magnitude higher than the previous year. Dissolved oxygen concentrations substantially decreased in surface waters during drawdown (to 41% saturation), which was associated with increased total iron and manganese concentrations. Combined, our results illustrate how changes in water level can have cascading effects on coupled physical, chemical, and biological processes. As climate change and water management continue to increase the frequency of drawdowns in lakes worldwide, our results highlight the importance of characterizing how water level variability can alter complex in‐lake ecosystem processes, thereby affecting water quality. 
    more » « less
  10. Abstract Ecosystems around the globe are experiencing changes in both the magnitude and fluctuations of environmental conditions due to land use and climate change. In response, ecologists are increasingly using near‐term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near‐term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost‐prohibitive or impossible for forecasting ecological variables that lack high‐frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used in situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using Forecasting Lake and Reservoir Ecosystems (FLARE), an open source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1‐ to 35‐day‐ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1‐day‐ahead forecast root mean square error (RMSE) of 0.81°C, mean 7‐day RMSE of 1.15°C, and mean 35‐day RMSE of 1.94°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1‐ to 7‐day‐ahead horizons, but weekly data assimilation resulted in the most skillful forecasts at 8‐ to 35‐day‐ahead horizons. Within a year, forecasts with weekly data assimilation consistently outperformed forecasts with daily data assimilation after the 8‐day forecast horizon during mixed spring/autumn periods and 5‐ to 14‐day‐ahead horizons during the summer‐stratified period, depending on depth. Our results suggest that lower frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high‐frequency sensor data. 
    more » « less