skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2327336

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cryptographic library developers take care to ensure their library does not leak secrets even when there are (inevitably) exploitable vulnerabilities in the applications the library is linked against. To do so, they choose some class of application vulnerabilities to defend against and hardcode protections against those vulnerabilities in the library code. A single set of choices is a poor fit for all contexts: a chosen protection could impose unnecessary overheads in contexts where those attacks are impossible, and an ignored protection could render the library insecure in contexts where the attack is feasible. We introduce RoboCop, a new methodology and toolchain for building secure and efficient applications from cryptographic libraries, via four contributions. First, we present an operational semantics that describes the behavior of a (cryptographic) library executing in the context of a potentially vulnerable application so that we can precisely specify what different attackers can observe. Second, we use our semantics to define a novel security property, Robust Constant Time (RCT), that defines when a cryptographic library is secure in the context of a vulnerable application. Crucially, our definition is parameterized by an attacker model, allowing us to factor out the classes of attackers that a library may wish to secure against. This refactoring yields our third contribution: a compiler that can synthesize bespoke cryptographic libraries with security tailored to the specific application context against which the library will be linked, guaranteeing that the library is RCT in that context. Finally, we present an empirical evaluation that shows the RoboCop compiler can automatically generate code to efficiently protect a wide range (over 500) of cryptographic library primitives against three classes of attacks: read gadgets (due to application memory safety vulnerabilities), speculative read gadgets (due to application speculative execution vulnerabilities), and concurrent observations (due to application threads), with performance overhead generally under 2% for protections from read gadgets and under 4% for protections from speculative read gadgets, thus freeing library developers from making one-size-fits-all choices between security and performance. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. Free, publicly-accessible full text available March 30, 2026
  3. We present Generic Refinement Types: a way to write modular higher-order specifications that abstract invariants over function contracts, while preserving automatic SMT-decidable verification. We show how generic refinements let us write a variety of modular higher-order specifications, including specifications for Rust's traits which abstract over the concrete refinements that hold for different trait implementations. We formalize generic refinements in a core calculus and show how to synthesize the generic instantiations algorithmically at usage sites via a combination of syntactic unification and constraint solving. We give semantics to generic refinements via the intuition that they correspond to ghost parameters, and we formalize this intuition via a type-preserving translation into the polymorphic contract calculus to establish the soundness of generic refinements. Finally, we evaluate generic refinements by implementing them in Flux and using it for two case studies. First, we show how generic refinements let us write modular specifications for Rust's vector indexing API that lets us statically verify the bounds safety of a variety of vector-manipulating benchmarks from the literature. Second, we use generic refinements to refine Rust's Diesel ORM library to track the semantics of the database queries issued by client applications, and hence, statically enforce data-dependent access-control policies in several database-backed web applications. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026