skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2327452

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Federated Learning (FL) is a promising distributed machine learning framework that allows collaborative learning of a global model across decentralized devices without uploading their local data. However, in real-world FL scenarios, the conventional synchronous FL mechanism suffers from inefficient training caused by slow-speed devices, commonly known as stragglers, especially in heterogeneous communication environments. Though asynchronous FL effectively tackles the efficiency challenge, it induces substantial system overheads and model degradation. Striking for a balance, semi-asynchronous FL has gained increasing attention, while still suffering from the open challenge of stale models, where newly arrived updates are calculated based on outdated weights that easily hurt the convergence of the global model. In this paper, we present SEAFL, a novel FL framework designed to mitigate both the straggler and the stale model challenges in semi-asynchronous FL. SEAFL dynamically assigns weights to uploaded models during aggregation based on their staleness and importance to the current global model. We theoretically analyze the convergence rate of SEAFL and further enhance the training efficiency with an extended variant that allows partial training on slower devices, enabling them to contribute to global aggregation while reducing excessive waiting times. We evaluate the effectiveness of SEAFL through extensive experiments on three benchmark datasets. The experimental results demonstrate that SEAFL outperforms its closest counterpart by up to ∼22% in terms of the wall-clock training time required to achieve target accuracy. 
    more » « less
    Free, publicly-accessible full text available June 3, 2026
  2. With the wide adoption of deep neural network (DNN) models for various applications, enterprises, and cloud providers have built deep learning clusters and increasingly deployed specialized accelerators, such as GPUs and TPUs, for DNN training jobs. To arbitrate cluster resources among multi-user jobs, existing schedulers fall short, either lacking fine-grained heterogeneity awareness or hardly generalizable to various scheduling policies. To fill this gap, we propose a novel design of a task-level heterogeneity-aware scheduler, Hadar, based on an online optimization framework that can express other scheduling algorithms. Hadar leverages the performance traits of DNN jobs on a heterogeneous cluster, characterizes the task-level performance heterogeneity in the optimization problem, and makes scheduling decisions across both spatial and temporal dimensions. The primal-dual framework is employed, with our design of a dual subroutine, to solve the optimization problem and guide the scheduling design. Extensive trace-driven simulations with representative DNN models have been conducted to demonstrate that Hadar improves the average job completion time (JCT) by 3× over an Apache YARN-based resource manager used in production. Moreover, Hadar outperforms Gavel[1], the state-of-the-art heterogeneity-aware scheduler, by 2.5× for the average JCT, and shortens the queuing delay by 13% and improve FTF (Finish-Time-Fairness) by 1.5%. 
    more » « less