skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2327912

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arabidopsis thaliana is currently the most-studied plant species on earth, with an unprecedented number of genetic, genomic, and molecular resources having been generated in this plant model. In the era of translating foundational discoveries to crops and beyond, we aimed to highlight the utility and challenges of using Arabidopsis as a reference for applied plant biology research, agricultural innovation, biotechnology, and medicine. We hope that this review will inspire the next generation of plant biologists to continue leveraging Arabidopsis as a robust and convenient experimental system to address fundamental and applied questions in biology. We aim to encourage laboratory and field scientists alike to take advantage of the vast Arabidopsis datasets, annotations, germplasm, constructs, methods, and molecular and computational tools in our pursuit to advance understanding of plant biology and help feed the world's growing population. We envision that the power of Arabidopsis-inspired biotechnologies and foundational discoveries will continue to fuel the development of resilient, high-yielding, nutritious plants for the betterment of plant and animal health and greater environmental sustainability. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. SUMMARY Genome editing technologies like CRISPR/Cas have greatly accelerated the pace of both fundamental research and translational applications in agriculture. However, many plant biologists are functionally limited to creating small, targeted DNA changes or large, random DNA insertions. The ability to efficiently generate large, yet precise, DNA changes will massively accelerate crop breeding cycles, enabling researchers to more efficiently engineer crops amidst a rapidly changing agricultural landscape. This review provides an overview of existing technologies that allow plant biologists to integrate large DNA sequences within a plant host and some associated technical bottlenecks. Additionally, this review explores a selection of emerging techniques in other host systems to inspire tool development in plants. 
    more » « less