- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, Julie_M (1)
-
Barve, Vijay (1)
-
Boone, James_H (1)
-
Bush, Sarah_E (1)
-
Cameron, Stephen L (1)
-
Dowdy, Nicolas_J (1)
-
Evenhuis, Neal_L (1)
-
Hastriter, Michael (1)
-
Light, Jessica_E (1)
-
Lozier, ed., Jeffrey (1)
-
Mayfield-Meyer, Teresa (1)
-
OConnor, Barry_M (1)
-
Poelen, Jorrit_H (1)
-
Racz, Gabor_R (1)
-
Seltmann, Katja_C (1)
-
Sullivan, Kathryn_A (1)
-
Tucker, Erika_M (1)
-
Zaspel, Jennifer_M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Classification of the biological diversity on Earth is foundational to all areas of research within the natural sciences. Reliable biological nomenclatural and taxonomic systems facilitate efficient access to information about organisms and their names over time. However, broadly sharing, accessing, delivering, and updating these resources remains a persistent problem. This barrier has been acknowledged by the biodiversity data sharing community, yet concrete efforts to standardize and continually update taxonomic names in a sustainable way remain limited. High diversity groups such as arthropods are especially challenging as available specimen data per number of species is substantially lower than vertebrate or plant groups. The Terrestrial Parasite Tracker Thematic Collections Network project developed a workflow for gathering expert-verified taxonomic names across all available sources, aligning those sources, and publishing a single resource that provides a model for future endeavors to standardize digital specimen identification data. The process involved gathering expert-verified nomenclature lists representing the full taxonomic scope of terrestrial arthropod parasites, documenting issues experienced, and finding potential solutions for reconciliation of taxonomic resources against large data publishers. Although discordance between our expert resources and the Global Biodiversity Information Facility are relatively low, the impact across all taxa affects thousands of names that correspond to hundreds of thousands of specimen records. Here, we demonstrate a mechanism for the delivery and continued maintenance of these taxonomic resources, while highlighting the current state of taxon name curation for biodiversity data sharing.more » « less
-
Cameron, Stephen L (, Annual Review of Entomology)The past decade has seen the availability of insect genomic data explode, with mitochondrial (mt) genome data seeing the greatest growth. The widespread adoption of next-generation sequencing has solved many earlier methodological limitations, allowing the routine sequencing of whole mt genomes, including from degraded or museum specimens and in parallel to nuclear genomic projects. The diversity of available taxa now allows finer-scale comparisons between mt and nuclear phylogenomic analyses; high levels of congruence have been found for most orders, with some significant exceptions (e.g., Odonata, Mantodea, Diptera). The evolution of mt gene rearrangements and their association with haplodiploidy have been tested with expanded taxonomic sampling, and earlier proposed trends have been largely supported. Multiple model systems have been developed based on findings unique to insects, including mt genome fragmentation (lice and relatives) and control region duplication (thrips), allowing testing of hypothesized evolutionary drivers of these aberrant genomic phenomena. Finally, emerging research topics consider the contributions of mt genomes to insect speciation and habitat adaption, with very broad potential impacts. Integration between insect mt genomic research and other fields within entomology continues to be our field's greatest opportunity and challenge.more » « less
An official website of the United States government
