skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2328647

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Soot is known for its enormous and pervasive negative impacts on human health and the environmental, but there much about soot that is not well known, including the precursors and chemical mechanisms involved in its formation. Many studies have characterized species associated with incipient particles, i.e., the first particles produced during soot formation. These studies provide insight into inception mechanisms, the pathways leading from gas-phase precursors to condensed-phase particles. Potential inception mechanisms involve one (or a combination) of two classes of pathways: physical nucleation, in which precursors undergo a thermodynamic phase change and are bound together by electrostatic forces, and chemical clustering, in which precursors react to form covalently bound clusters. In a recent paper, Shao et al.1 concluded that soot inception occurs through physical nucleation and claimed to have provided direct evidence of such a mechanism. We demonstrate that this conclusion is inconsistent with (1) the consensus of published work, (2) the data, theory, and analysis on which this conclusion is nominally based, and (3) the second law of thermodynamics. We show that, contrary to their conclusions, their experimental and theoretical results provide evidence for a chemical-clustering soot-inception mechanism. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026