Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles. These components, in conjunction with a set of defined metrics based on our prior work on Operational Safety Assessment (OSA) by the Institute of Automated Mobility (IAM), allow us to conduct a detailed analysis of driving safety. Our results reveal the distribution of these metrics under various real-world car-following scenarios and characterize the impact of different parameters and thresholds in the metrics. By enabling a data-driven approach to address driving safety in car-following scenarios, our work can empower traffic operators and policymakers to make informed decisions and contribute to a safer, more efficient future for road transportation systems.more » « less
-
Ensuring the safety of vulnerable road users (VRUs) such as pedestrians, users of micro-mobility vehicles, and cyclists is imperative for the commercialization of automated vehicles (AVs) in urban traffic scenarios. City traffic intersections are of particular concern due to the precarious situations VRUs often encounter when navigating these locations, primarily because of the unpredictable nature of urban traffic. Earlier work from the Institute of Automated Vehicles (IAM) has developed and evaluated Driving Assessment (DA) metrics for analyzing car following scenarios. In this work, we extend those evaluations to an urban traffic intersection testbed located in downtown Tempe, Arizona. A multimodal infrastructure sensor setup, comprising a high-density, 128-channel LiDAR and a 720p RGB camera, was employed to collect data during the dusk period, with the objective of capturing data during the transition from daylight to night. In this study, we present and empirically assess the benefits of high-density LiDAR in low-light and dark conditions—a persistent challenge in VRU detection when compared to traditional RGB traffic cameras. Robust detection and tracking algorithms were utilized for analyzing VRU-to-vehicle and vehicle-to-vehicle interactions using the LiDAR data. The analysis explores the effectiveness of two DA metrics based on the i.e. Post Encroachment Time (PET) and Minimum Distance Safety Envelope (MDSE) formulations in identifying potentially unsafe scenarios for VRUs at the Tempe intersection. The codebase for the data pipeline, along with the high-density LiDAR dataset, has been open-sourced with the goal of benefiting the AV research community in the development of new methods for ensuring safety at urban traffic intersections.more » « less
An official website of the United States government
