Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract While there is a diversity of approaches for modeling phytoplankton blooms, their accuracy in predicting the onset and manifestation of a bloom is still lagging behind what is needed to support effective management. We outline a framework that integrates trait theory and ecosystem modeling to improve bloom prediction. This framework builds on the concept that the phenology of blooms is determined by the dynamic interaction between the environment and traits within the phytoplankton community. Phytoplankton groups exhibit a collection of traits that govern the interplay of processes that ultimately control the phases of bloom initiation, maintenance, and collapse. An example of process‐trait mapping is used to demonstrate a more consistent approach to bloom model parameterization that allows better alignment with models and laboratory‐ and ecosystem‐scale datasets. Further approaches linking statistical‐mechanistic models to trait parameter databases are discussed as a way to help optimize models to better simulate bloom phenology and allow them to support a wider range of management needs.more » « lessFree, publicly-accessible full text available August 13, 2026
-
Abstract Phytoplankton blooms create harmful toxins, scums, and taste and odor compounds and thus pose a major risk to drinking water safety. Climate and land use change are increasing the frequency and severity of blooms, motivating the development of new approaches for preemptive, rather than reactive, water management. While several real-time phytoplankton forecasts have been developed to date, none are both automated and quantify uncertainty in their predictions, which is critical for manager use. In response to this need, we outline a framework for developing the first automated, real-time lake phytoplankton forecasting system that quantifies uncertainty, thereby enabling managers to adapt operations and mitigate blooms. Implementation of this system calls for new, integrated ecosystem and statistical models; automated cyberinfrastructure; effective decision support tools; and training for forecasters and decision makers. We provide a research agenda for the creation of this system, as well as recommendations for developing real-time phytoplankton forecasts to support management.more » « less
-
Abstract Despite the growing use of Aquatic Ecosystem Models for lake modeling, there is currently no widely applicable framework for their configuration, calibration, and evaluation. Calibration is generally based on direct data comparison of observed versus modeled state variables using standard statistical techniques, however, this approach may not give a complete picture of the model's ability to capture system‐scale behavior that is not easily perceivable in observations, but which may be important for resource management. The aim of this study is to compare the performance of “naïve” calibration and a “system‐inspired” calibration, an approach that augments the standard state‐based calibration with a range of system‐inspired metrics (e.g., thermocline depth, metalimnetic oxygen minima), to increase the coherence between the simulated and natural ecosystems. A coupled physical‐biogeochemical model was applied to a focal site to simulate two key state‐variables: water temperature and dissolved oxygen. The model was calibrated according to the new system‐inspired modeling convention, using formal calibration techniques. There was an improvement in the simulation using parameters optimized on the additional metrics, which helped to reduce uncertainty predicting aspects of the system relevant to reservoir management, such as the occurrence of the metalimnetic oxygen minima. Extending the use of system‐inspired metrics when calibrating models has the potential to improve model fidelity for capturing more complex ecosystem dynamics.more » « less
-
Free, publicly-accessible full text available July 31, 2026
-
Free, publicly-accessible full text available May 19, 2026
An official website of the United States government
