Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Squeezed light has long been used to enhance the precision of a single optomechanical sensor. An emerging set of proposals seeks to use arrays of optomechanical sensors to detect weak distributed forces, for applications ranging from gravity-based subterranean imaging to dark matter searches; however, a detailed investigation into the quantum-enhancement of this approach remains outstanding. Here, we propose an array of entanglement-enhanced optomechanical sensors to improve the broadband sensitivity of distributed force sensing. By coherently operating the optomechanical sensor array and distributing squeezing to entangle the optical fields, the array of sensors has a scaling advantage over independent sensors (i.e.,$$\sqrt{M}\to M$$ , whereMis the number of sensors) due to coherence as well as joint noise suppression due to multi-partite entanglement. As an illustration, we consider entanglement-enhancement of an optomechanical accelerometer array to search for dark matter, and elucidate the challenge of realizing a quantum advantage in this context.more » « less
-
Optomechanical systems have been exploited in ultrasensitive measurements of force, acceleration and magnetic fields. The fundamental limits for optomechanical sensing have been extensively studied and now well understood—the intrinsic uncertainties of the bosonic optical and mechanical modes, together with backaction noise arising from interactions between the two, dictate the standard quantum limit. Advanced techniques based on non-classical probes, in situ ponderomotive squeezed light and backaction-evading measurements have been developed to overcome the standard quantum limit for individual optomechanical sensors. An alternative, conceptually simpler approach to enhance optomechanical sensing rests on joint measurements taken by multiple sensors. In this configuration, a pathway to overcome the fundamental limits in joint measurements has not been explored. Here we demonstrate that joint force measurements taken with entangled probes on multiple optomechanical sensors can improve the bandwidth in the thermal-noise-dominant regime or the sensitivity in the shot-noise-dominant regime. Moreover, we quantify the overall performance of entangled probes with the sensitivity–bandwidth product and observe a 25% increase compared with that of classical probes. The demonstrated entanglement-enhanced optomechanical sensors would enable new capabilities for inertial navigation, acoustic imaging and searches for new physics.more » « less
-
The hypothetical axion particle (of unknown mass) is a leading candidate for dark matter (DM). Many experiments search for axions with microwave cavities, where an axion may convert into a cavity photon, leading to a feeble excess in the output power of the cavity. Recent work [Backes et al., Nature 590, 238 (2021)] has demonstrated that injecting squeezed vacuum into the cavity can substantially accelerate the axion search. Here, we go beyond and provide a theoretical framework to leverage the benefits of quantum squeezing in a network setting consisting of many sensor cavities. By forming a local sensor network, the signals among the cavities can be combined coherently to boost the axion search. Furthermore, injecting multipartite entanglement across the cavities—generated by splitting a squeezed vacuum—enables a global noise reduction. We explore the performance advantage of such a local, entangled sensor network, which enjoys both coherence between the axion signals and entanglement between the sensors. Our analyses are pertinent to next-generation DM-axion searches aiming to leverage a network of sensors and quantum resources in an optimal way. Finally, we assess the possibility of using a more exotic quantum state, the Gottesman-Kitaev-Preskill (GKP) state. Despite a constant-factor improvement in the scan time relative to a single-mode squeezed state in the ideal case, the advantage of employing a GKP state disappears when a practical measurement scheme is considered.more » « less