skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2330502

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Farm to Fork (F2F) Strategy under the Green Deal aims to halve nutrient losses by 2030 in the European Union (EU). Here, using the nitrogen surplus as an indicator for nitrogen losses in agricultural areas, we explore a range of scenarios for nitrogen surplus reduction across EU landscapes. We identify four nitrogen surplus typologies, each responding differently to input reduction. A 20% decrease in synthetic fertilizer alone is projected to reduce the nitrogen surplus by only 10–16%, falling short of F2F goals. Specific top-down scenarios such as reducing synthetic fertilizer by 43% and animal manure by 4%, coupled with improved technological and management practices, can achieve a reduction of up to 30–45% in nitrogen surplus. Among the most ambitious scenarios, only a handful of EU countries (four to five) may meet the intended F2F nitrogen pollution targets. Achieving F2F goals requires region-specific strategies to reduce nitrogen use while improving efficiency and sustaining productivity. 
    more » « less
  2. Abstract Agriculture is a key contributor to gaseous emissions causing climate change, the degradation of water quality, and biodiversity loss. The extant climate change crisis is driving a focus on mitigating agricultural gaseous emissions, but wider policy objectives, beyond net zero, mean that evidence on the potential co-benefits or trade-offs associated with on-farm intervention is warranted. For novelty, aggregated data on farm structure and spatial distribution for different farm types were integrated with high-resolution data on the natural environment to generate representative model farms. Accounting for existing mitigation effects, the Catchment Systems Model was then used to quantify global warming potential, emissions to water, and other outcomes for water management catchments across England under both business-as-usual and a maximum technically feasible mitigation potential scenario. Mapped spatial patterns were overlain with the distributions of areas experiencing poor water quality and biodiversity loss to examine potential co-benefits. The median business-as-usual GWP20 and GWP100, excluding embedded emissions, were estimated to be 4606 kg CO2eq. ha−1(inter-quartile range 4240 kg CO2eq. ha−1) and 2334 kg CO2eq. ha−1(inter-quartile range 1462 kg CO2eq. ha−1), respectively. The ratios of business-as-usual GHG emissions to monetized farm production ranged between 0.58 and 8.89 kg CO2eq. £−1for GWP20, compared with 0.53–3.99 kg CO2eq. £−1for GWP100. The maximum mitigation potentials ranged between 17 and 30% for GWP20 and 19-27% for GWP100 with both corresponding medians estimated to be ~24%. Here, we show for the first time that the co-benefits for water quality associated with reductions in phosphorus and sediment loss were both equivalent to around a 34% reduction, relative to business-as-usual, in specific management catchment reporting units where excess water pollutant loads were identified. Several mitigation measures included in the mitigation scenario were also identified as having the potential to deliver co-benefits for terrestrial biodiversity. 
    more » « less
  3. Sudden reductions in crop yield (i.e., yield shocks) severely disrupt the food supply, intensify food insecurity, depress farmers' welfare, and worsen a country's economic conditions. Here, we study the spatiotemporal patterns of wheat yield shocks, quantified by the lower quantiles of yield fluctuations, in 86 countries over 30 years. Furthermore, we assess the relationships between shocks and their key ecological and socioeconomic drivers using quantile regression based on statistical (linear quantile mixed model) and machine learning (quantile random forest) models. Using a panel dataset that captures spatiotemporal patterns of yield shocks and possible drivers in 86 countries, we find that the severity of yield shocks has been increasing globally since 1997. Moreover, our cross-validation exercise shows that quantile random forest outperforms the linear quantile regression model. Despite this performance difference, both models consistently reveal that the severity of shocks is associated with higher weather stress, nitrogen fertilizer application rate, and gross domestic product (GDP) per capita (a typical indicator for economic and technological advancement in a country). While the unexpected negative association between more severe wheat yield shocks and higher fertilizer application rate and GDP per capita does not imply a direct causal effect, they indicate that the advancement in wheat production has been primarily on achieving higher yields and less on lowering the possibility and magnitude of sharp yield reductions. Hence, in the context of growing extreme weather stress, there is a critical need to enhance the technology and management practices that mitigate yield shocks to improve the resilience of the world food systems. 
    more » « less
  4. Synthetic ammonia production by the Haber–Bosch process revolutionized agriculture by making relatively inexpensive nitrogen (N) fertilizer widely available and enabling a rise in global food production1,2. The Haber–Bosch process relies on fossil fuels (known as grey ammonia production) and emits more than 450 Mt of CO2 annually3. Green ammonia, which is produced using renewable energy, offers a pathway to decouple ammonia production from fossil fuels and reduce CO2 emissions. As a carbon-free fuel, green ammonia could partially replace fossil fuels to decarbonize hard-to-abate sectors such as maritime shipping4. However, the widespread use of green ammonia could have complex environmental and social consequences, as it threatens to add reactive N into the biosphere3 and could disrupt fertilizer markets. In this Comment, we identify opportunities, barriers and open questions related to green ammonia production and usage as a fertilizer and beyond. We then recommend research priorities to avoid unforeseen consequences through research, monitoring and adaptation in real time. 
    more » « less
  5. For a selection of catchments from the North Wyke Farm Platform in southwest England, where land use conversions have been introduced, daily time series data covering weather conditions (minimum temperature, maximum temperature, total rainfall, wind speed and solar radiation), near-surface soil status (moisture content and temperature), flow and concentrations of key nitrogen species (nitrate and nitrite, ammonium) have been filtered based on attached data quality tags . The datasets run between 2013 and March 2024. For the main climate variables, data gaps were infilled with preceding- and following-on daily data, observations from a nearby weather station or existing national datasets to generate a continuous data series for modelling. For the other data series, annual and seasonal summary statistics on data coverage are provided. Information on significant field events, such as ploughing, drilling and harvest, fertiliser applications and manure spreading were also tabulated. 
    more » « less
  6. Decarbonization is crucial to combat climate change. However, some decarbonization strategies could profoundly impact the nitrogen cycle. In this Review, we explore the nitrogen requirements of five major decarbonization strategies to reveal the complex interconnections between the carbon and nitrogen cycles and identify opportunities to enhance their mutually sustainable management. Some decarbonization strategies require substantial new nitrogen production, potentially leading to increased nutrient pollution and exacerbation of eutrophication in aquatic systems. For example, the strategy of substituting 44% of fossil fuels used in marine shipping with ammonia-based fuels could reduce CO2 emissions by up to 0.38 Gt CO2-eq yr−1 but would require a corresponding increase in new nitrogen synthesis of 212 Tg N yr−1. Similarly, using biofuels to achieve 0.7 ± 0.3 Gt CO2-eq yr−1 mitigation would require new nitrogen inputs to croplands of 21–42 Tg N yr−1. To avoid increasing nitrogen losses and exacerbating eutrophication, decarbonization efforts should be designed to provide carbon–nitrogen co-benefits. Reducing the use of carbon-intensive synthetic nitrogen fertilizer is one example that can simultaneously reduce both nitrogen inputs by 14 Tg N yr−1 and CO2 emissions by 0.04 (0.03–0.06) Gt CO2-eq yr−1. Future research should guide decarbonization efforts to mitigate eutrophication and enhance nitrogen use efficiency in agriculture, food and energy systems. 
    more » « less
  7. Efficient management of nitrogen (N) and phosphorus (P) is imperative for sustainable agriculture, resource conservation, and reducing environmental pollution. Despite progress in on-farm practices and urban wastewater treatment in the Chesapeake Bay (CB) watershed, limited attention has been given to nutrient transport, use, and handling between farms and urban environments. This study uses the hierarchical CAFE (Cropping system, Animal-crop system, Food system, and Ecosystem) framework to evaluate nutrient management performances within the watershed. We first develop a three-decade, county-level nutrient budget database (1985–2019), then analyze the spatiotemporal patterns of N and P budgets, as well as N and P use efficiencies, within the four CAFE hierarchies. Our results indicate a sizable increase in potential N and P losses beyond crop fields (i.e. in the Animal-crop system, Food system, and Ecosystem), surpassing losses from cropland in over 90% of counties. To address these system-wide trade-offs, we estimate the nutrient resources in waste streams beyond croplands, which, if recovered and recycled, could theoretically offset mineral fertilizer inputs in over 60% of counties. Additionally, the growing imbalance in excess N versus P across systems, which increases the N:P ratio of potential losses, could pose an emerging risk to downstream aquatic ecosystems. By utilizing a systematic approach, our novel application of the CAFE framework reveals trade-offs and synergies in nutrient management outcomes that transcend agro-environmental and political boundaries, underscores disparities in N and P management, and helps to identify unique opportunities for enhancing holistic nutrient management across systems within the CB watershed. 
    more » « less
  8. Weather conditions, hydrological responses and the dynamics of key nitrogen species in field runoff were continuously monitored at 15-min resolution on the intensively instrumented North Wyke Farm Platform (NWFP), a UK National Bioscience Research Infrastructure (NBRI), to support research on sustainable and resilient agriculture in the UK. Released data spanning 2013 to 2024 for 6 selected field catchments were aggregated to daily timestep, with reference to data quality flags, to produce continuous weather data, including maximum and minimum air temperature, daily total rainfall, wind speed and quality assured daily average soil moisture content, soil temperature at 15 cm depth, runoff rates, as well as nitrate, nitrite and ammonium concentrations. External data sources were sourced to infill some gaps for the weather data and summary statistics on data coverage were generated for the other data on an annual and seasonal basis where appropriate. Along with detailed field management data, the observed data provide a valuable resource for the parameterisation, calibration and validation of physically-based models for nitrogen losses at field scale to account for alternative management practices and land use under changing climate conditions 
    more » « less