skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2331366

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The citation of scientific papers is considered a simple and direct indicator of papers' impact. This paper predicts papers' citations through team‐related variables, team composition, and team structure. Team composition includes team size, male/female dominance, academia/industry collaboration, unique race number, and unique country number. Team structures are made up of team power level and team power hierarchy. Team members' previous citation number, H‐index, previous collaborators, career age, and previous paper numbers are a proxy of team power. We calculated the mean value and Gini coefficient to represent team power level (the collective team capability) and team power hierarchy (the vertical difference of power distribution within a team). Taking 1,675,035 CS teams in the DBLP dataset, we trained the XGBoost model to predict high/low citation. Our model has reached 0.71 in AUC and 70.45% in accuracy rate. Utilizing Explainable AI method SHAP to evaluate features' relative importance in predicting team citation categories, we found that team structure plays a more critical role than team composition in predicting team citation. High team power level, flat team power structure, diverse race background, large team, collaboration with industry, and male‐dominated teams can bring higher team citations. Our project can provide insights into how to form the best scientific teams and maximize team impact from team composition and team structure. 
    more » « less
  2. We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025