- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Coughlan, Michael (2)
-
Marchezi, José Paulo (2)
-
Mukundan, Raman (2)
-
Adewuyi, Mayowa (1)
-
Connor, Hyunju (1)
-
Hampton, Don (1)
-
Hampton, Donald (1)
-
Johnson, Jeremiah (1)
-
Keesee, Amy (1)
-
Keesee, Amy M (1)
-
Pinto, Victor (1)
-
Pinto, Victor A (1)
-
Tibbetts, Joel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Solar wind particles interact with the Earth's magnetic field and can cause rapid changes in the magnetic field on the ground. This can result in Geomagnetically Induced Currents capable of causing significant damage to infrastructure, making it vital to predict when and where the fluctuations will occur so the impact can be limited. The fluctuations can occur on both a large and highly localized scale, further complicating precise predictions. Machine learning (ML) techniques have emerged as an effective method of predicting space weather phenomena, with their largest complication being their lack of explainability. Here we seek to use such ML methods, combined with a model explainability technique called SHapley Additive exPlanation to both predict and times of extreme localization. Using L1 solar wind data and magnetometer data from SuperMAG, we train two different types of models, one predicting extreme and one predicting large Region‐to‐Specific Difference (RSD). We are seeking to forecast the maximum of RSD and within a rolling 60‐min window, beginning 30 min in the future. The models perform well across a variety of latitudes and Magnetic Local times. While traditional drivers of space weather ( and ) are important drivers of the ML models, other not often examined parameters (particularly ) exhibit non‐uniform spatial and latitudinal dependencies which cannot be attributed to correlation with more influential parameters. Additionally, the inertia of the internal geomagnetic field on a regional scale exhibits a more nuanced behavior compared to previous studies on individual magnetometer stations.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Mukundan, Raman; Keesee, Amy M; Marchezi, José Paulo; Pinto, Victor A; Coughlan, Michael; Hampton, Donald (, Frontiers in Astronomy and Space Sciences)Geomagnetically induced currents (GICs) pose a significant space weather hazard, driven by geomagnetic field variation due to the coupling of the solar wind to the magnetosphere-ionosphere system. Extensive research has been dedicated to understanding ground-level geomagnetic field perturbations as a GIC proxy. Still, the non-uniform aspect of geomagnetic fluctuations make it difficult to fully characterize the ground-level magnetic field across large regions of the globe. Here, we focus on localized geomagnetic disturbances (LGMDs) in the North American region and specify the degree to which these disturbances are localized. Employing the electrodynamics-informed Spherical Elementary Current Systems (SECS) method, we spatially interpolate magnetic field perturbations between ground-based magnetometer stations. In this way, we represent the ground magnetic field as a series of heatmaps at high temporal and spatial resolution. We leverage heatmaps from storm time during solar cycle 24 to automatically identify LGMDs. We build a statistical picture of the frequency with which LGMDs occur, their scale sizes, and their latitude-longitude aspect ratios. Additionally, we use an information theory approach to quantify the dependence of these three attributes on the phase of the solar cycle. We find no clear influence of the solar cycle on any of the three attributes. We offer some avenues toward explaining why LGMDs might behave broadly the same whether they arise during solar maximum or solar minimum.more » « lessFree, publicly-accessible full text available August 13, 2026
An official website of the United States government
