skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2331908

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Circulation in the Gulf of Mexico is dominated by the Loop Current and associated mesoscale eddies. These mesoscale eddies pose a safety risk to offshore energy production and potential dispersal of large-scale pollutants like oil. We use a data-driven, physics-informed, and numerically consistent deep learning–based ocean emulator called OceanNet to generate a 120-day forecast of the sea surface height (SSH) in the eastern Gulf of Mexico. OceanNet uses a new dataset of high-resolution data assimilative ocean reanalysis (1993–2022) as input. This model is trained using years 1993–2018 and evaluated on four eddies during years 2019–21. For comparison, we use a state-of-the-art numerical ocean model to generate a dynamical model prediction initialized every 5 days from 27 April 2019 to 1 April 2020 (during eddies Sverdrup and Thor) using persistent forcing and boundary conditions. The dynamical model takes seven wall-clock days to run, whereas OceanNet runs in minutes. Edges of Loop Current eddies (LCEs) pose the most potent risk to offshore energy operations and pollutant dispersal due to strong water velocities. Therefore, most of the analysis focuses on edge accuracy, quantified by the modified Hausdorff distance. The edge of the LCEs is defined by the 17-cm sea surface height contour, which generally coincides with the strongest water velocity. The OceanNet prediction outperforms both persistence and the dynamical model prediction. Overall, this new ocean emulator provides a promising new approach to generate seasonal forecasts of LCEs and generates large model ensembles efficiently to quantify forecast uncertainty that is long needed by scientists and decision-makers for offshore operations. Significance StatementCirculation in the Gulf of Mexico (GoM) is dominated by the energetic Loop Current and associated mesoscale eddies (typically 150–400 km in diameter). As these eddies propagate westward through the Gulf, they pose a safety risk to offshore energy production and potential large-scale pollutant dispersal. We used ocean model output (1993–2022) to train a data-driven ocean emulator called OceanNet that generates a seasonal (up to 120 day) prediction of sea surface height (SSH) in the eastern GoM. For comparison, a simple dynamical model prediction is also evaluated. OceanNet’s performance is assessed with a focus on edge accuracy, the most potent risk to offshore energy operations and pollutant dispersal. Overall, OceanNet performs well for a seasonal forecast and shows great potential for further development. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract Studies suggest a strong link between low‐frequency sea level variability in the South Atlantic Bight (SAB) and open ocean dynamics. However, the mechanisms driving this connection remain unclear. By analyzing a high‐resolution, three‐dimensional baroclinic ocean reanalysis, we identify a pathway that links open ocean dynamics to SAB coastal sea level variability through the shelf edge near Cape Hatteras. Gulf Stream meanders in this region induce sea level fluctuations that propagate along the entire SAB shelf. Using an idealized barotropic model, we further demonstrate that topographic waves mediate the propagation of the Gulf Stream signal onto the shelf. Moreover, the Gulf Stream variability is driven by zonal wind stress in the Northwest Atlantic, which is likely modulated by the North Atlantic Oscillation. These findings offer new insights into regional sea level prediction and contribute to broader climate research efforts. 
    more » « less
  3. Abstract This study introduces an ensemble learning model for the prediction of significant wave height and average wave period in stations along the U.S. Atlantic coast. The model utilizes the stacking method, combining three base learner models - Lasso regression, support vector machine, and Multi-layer Perceptron - to achieve more precise and robust predictions. To train and evaluate the models, a twenty-year dataset comprising meteorological and wave data was used, enabling forecasts for significant wave height and average wave period at 1, 3, 6, and 12 hour intervals. The data collection involved two NOAA buoy stations situated on the U.S. Atlantic coast. The findings demonstrate that the ensemble learning model constructed through the stacking method yields significantly higher accuracy in predicting significant wave height within the specified time intervals. Moreover, the study investigates the influence of swell waves on forecasting significant wave height and average wave period. Notably, the inclusion of swell waves improves the accuracy of the 12-hour forecast. Consequently, the developed ensemble model effectively estimates both significant wave height and average wave period. The ensemble model outperforms the individual models in forecasting significant wave height and average wave period. This ensemble learning model serves as a viable alternative to conventional coastal models for predicting wave parameters. 
    more » « less
  4. Free, publicly-accessible full text available November 10, 2026
  5. Free, publicly-accessible full text available September 8, 2026
  6. Free, publicly-accessible full text available August 3, 2026
  7. Free, publicly-accessible full text available July 20, 2026
  8. Free, publicly-accessible full text available July 18, 2026
  9. Graph Neural Networks (GNNs) resurge as a trending research subject owing to their impressive ability to capture representations from graph-structured data. However, the black-box nature of GNNs presents a significant challenge in terms of comprehending and trusting these models, thereby limiting their practical applications in mission-critical scenarios. Although there has been substantial progress in the field of explaining GNNs in recent years, the majority of these studies are centered on static graphs, leaving the explanation of dynamic GNNs less explored. Dynamic GNNs, with their ever-evolving graph structures, pose a unique challenge and require additional efforts to effectively capture temporal dependencies and structural relationships. To address this challenge, we present DyExplainer, a novel approach to explaining dynamic GNNs on the fly. DyExplainer trains a dynamic GNN backbone to extract representations of the graph at each snapshot, while simultaneously exploring structural relationships and temporal dependencies through a sparse attention technique. To preserve the desired properties of the explanation, such as structural consistency and temporal continuity, we augment our approach with contrastive learning techniques to providea priori-guided regularization. To model longer-term temporal dependencies, we develop a buffer-based live-updating scheme for training. The results of our extensive experiments on various datasets demonstrate the superiority of DyExplainer, not only providing faithful explainability of the model predictions but also significantly improving the model prediction accuracy, as evidenced in the link prediction task. 
    more » « less
    Free, publicly-accessible full text available May 31, 2026
  10. Free, publicly-accessible full text available April 27, 2026