skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2333940

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Abstract. Earth and other terrestrial and icy planetary bodies deform viscoelastically under various forces. Numerical modeling plays a critical role in understanding the nature of various dynamic deformation processes. This article introduces a newly developed open-source package, CitcomSVE-3.0, which efficiently solves the viscoelastic deformation of planetary bodies. Based on its predecessor, CitcomSVE-2.1, CitcomSVE-3.0 is updated to account for three-dimensional elastic compressibility and depth-dependent density, which are particularly important in modeling horizontal displacement for viscoelastic deformation. We benchmark CitcomSVE-3.0 against a semi-analytical code for two types of loading problems: (1) single harmonic loads on the surface or as a tidal force and (2) the glacial isostatic adjustment (GIA) problem with a realistic ice sheet loading history (ICE-6G_D) and an updated version of sea level equations. The benchmark results presented here demonstrate the accuracy and efficiency of this package. CitcomSVE-3.0 shows second-order accuracy in terms of spatial resolution. For typical GIA modeling with a 122 kyr glaciation–deglaciation history, a surface horizontal resolution of ∼50 km, and a time increment of 125 years, this takes ∼3 h on 384 CPU cores to complete, with displacement rate errors of less than 5 %. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  3. Mantle viscosity exerts important controls on the long-term (i.e., >106 years) dynamics of the mantle and lithosphere and the short-term (i.e., 10 to 104 years) crustal motion induced by loading forces including ice melting, sea-level changes, and earthquakes. However, mantle viscosity structures inferred from modeling observations associated with mantle dynamic and loading processes may differ significantly and remain a hotly debated topic over recent decades. In this study, we investigate the effects of mantle viscosity structures on observations of the geoid, mantle structures, and present-day crustal motions and time-varying gravity by considering five representative mantle viscosity structures in models of mantle convection and glacial isostatic adjustment (GIA). These five viscosity models fall into two categories: 1) two viscosity models derived from modeling the geoid in mantle convection models with ~100 times more viscous lower mantle than the upper mantle, and 2) the other three with less viscosity increase from the upper to lower mantles that are derived from modeling the late Pleistocene and Holocene relative sea level changes and other observations in GIA models. Our convection models use the plate motion history for the last 130 Myrs as the surface boundary conditions and depth- and temperature-dependent viscosity to predict the present-day convective mantle structure of subducted slabs and the intermediate wavelength (degrees 4–12) geoid. Our GIA models using different ice history models (e.g., ICE-6 G and ANU) compute the GIA-induced present-day crustal motions and time-varying gravity. Our calculations demonstrate that while the viscosity models with a higher viscosity in the lower mantle (~2 × 1022 Pa.s) reproduce the degrees 4–12 geoid and seismic slab structures, they significantly over-predict the geodetic (i. e., GPS and GRACE) observations of crustal motions and time varying gravity. Our calculations also show that while two viscosity models derived from fitting the RSL data with averaged mantle viscosity of ~1021 Pa.s for the top 1200 km of the mantle reproduce well the geodetic observations independent of ice models, they fail to explain the geoid and seismic slab structures. Therefore, our study highlights the persisting conundrum of mantle viscosity structures derived from different observations. We also discuss a number of possible ways including transient, stress-dependent and 3-D viscosity to resolve this important issue in Geodynamics. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026