skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2334033

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the evolution of the bar fraction in disk galaxies between 0.5 < z < 4.0 using multiband colored images from JWST Cosmic Evolution Early Release Science Survey (CEERS). These images were classified by citizen scientists in a new phase of the Galaxy Zoo (GZ) project called GZ CEERS. Citizen scientists were asked whether a strong or weak bar was visible in the host galaxy. After considering multiple corrections for observational biases, we find that the bar fraction decreases with redshift in our volume-limited sample (n= 398); from 2 5 4 + 6 % at 0.5 <z< 1.0 to 3 1 + 6 % at 3.0 < z < 4.0. However, we argue it is appropriate to interpret these fractions as lower limits. Disentangling real changes in the bar fraction from detection biases remains challenging. Nevertheless, we find a significant number of bars up toz= 2.5. This implies that disks are dynamically cool or baryon dominated, enabling them to host bars. This also suggests that bar-driven secular evolution likely plays an important role at higher redshifts. When we distinguish between strong and weak bars, we find that the weak bar fraction decreases with increasing redshift. In contrast, the strong bar fraction is constant between 0.5 <z< 2.5. This implies that the strong bars found in this work are robust long-lived structures, unless the rate of bar destruction is similar to the rate of bar formation. Finally, our results are consistent with disk instabilities being the dominant mode of bar formation at lower redshifts, while bar formation through interactions and mergers is more common at higher redshifts. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  2. ABSTRACT We have not yet observed the epoch at which disc galaxies emerge in the Universe. While high-z measurements of large-scale features such as bars and spiral arms trace the evolution of disc galaxies, such methods cannot directly quantify featureless discs in the early Universe. Here, we identify a substantial population of apparently featureless disc galaxies in the Cosmic Evolution Early Release Science (CEERS) survey by combining quantitative visual morphologies of $${\sim} 7000$$ galaxies from the Galaxy Zoo JWST CEERS project with a public catalogue of expert visual and parametric morphologies. While the highest redshift featured disc we identify is at $$z_{\rm {phot}}=5.5$$, the highest redshift featureless disc we identify is at $$z_{\rm {phot}}=7.4$$. The distribution of Sérsic indices for these featureless systems suggests that they truly are dynamically cold: disc-dominated systems have existed since at least $$z\sim 7.4$$. We place upper limits on the featureless disc fraction as a function of redshift, and show that up to 75 per cent of discs are featureless at $3.0< z< 7.4$. This is a conservative limit assuming all galaxies in the sample truly lack features. With further consideration of redshift effects and observational constraints, we find the featureless disc fraction in CEERS imaging at these redshifts is more likely $${\sim} 29{\!-\!}38~{{\ \rm per\ cent}}$$. We hypothesize that the apparent lack of features in a third of high-redshift discs is due to a higher gas fraction in the early Universe, which allows the discs to be resistant to buckling and instabilities. 
    more » « less