Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 28, 2026
-
Free, publicly-accessible full text available September 7, 2026
-
Free, publicly-accessible full text available July 20, 2026
-
Free, publicly-accessible full text available April 26, 2026
-
Large Language Models (LLMs) have demonstrated significant potential across various applications, but their use as AI copilots in complex and specialized tasks is often hindered by AI hallucinations, where models generate outputs that seem plausible but are incorrect. To address this challenge, we develop AutoFEA, an intelligent system that integrates LLMs with Finite Element Analysis (FEA) to automate the generation of FEA input files. Our approach features a novel planning method and a graph convolutional network (GCN)-Transformer Link Prediction retrieval model, which enhances the accuracy and reliability of the generated simulations. The AutoFEA system proceeds with key steps: dataset preparation, step-by-step planning, GCN-Transformer Link Prediction retrieval, LLM-driven code generation, and simulation using CalculiX. In this workflow, the GCN-Transformer model predicts and retrieves relevant example codes based on relationships between different steps in the FEA process, guiding the LLM in generating accurate simulation codes. We validate AutoFEA using a specialized dataset of 512 meticulously prepared FEA projects, which provides a robust foundation for training and evaluation. Our results demonstrate that AutoFEA significantly reduces AI hallucinations by grounding LLM outputs in physically accurate simulation data, thereby improving the success rate and accuracy of FEA simulations and paving the way for future advancements in AI-assisted engineering tasks.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Free, publicly-accessible full text available March 10, 2026
-
Free, publicly-accessible full text available March 10, 2026
-
Graphs are ubiquitous structures found in numerous real-world applications, such as drug discovery, recommender systems, and social network analysis. To model graph-structured data, graph neural networks (GNNs) have become a popular tool. However, existing GNN architectures encounter challenges in cross-graph learning where multiple graphs have different feature spaces. To address this, recent approaches introduce text-attributed graphs (TAGs), where each node is associated with a textual description, which can be projected into a unified feature space using textual encoders. While promising, this method relies heavily on the availability of text-attributed graph data, which is difficult to obtain in practice. To bridge this gap, we propose a novel method named Topology-Aware Node description Synthesis (TANS), leveraging large language models (LLMs) to convert existing graphs into text-attributed graphs. The key idea is to integrate topological information into LLMs to explain how graph topology influences node semantics. We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating its applicability. Notably, on text-free graphs, our method significantly outperforms existing approaches that manually design node features, showcasing the potential of LLMs for preprocessing graph-structured data in the absence of textual information. The code and data are available at https://github.com/Zehong-Wang/TANS.more » « less
An official website of the United States government

Full Text Available