skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2335666

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Building a skilled cybersecurity workforce is paramount to building a safer digital world. However, the diverse skill set, constantly emerging vulnerabilities, and deployment of new cyber threats make learning cybersecurity challenging. Traditional education methods struggle to cope with cybersecurity's rapidly evolving landscape and keep students engaged and motivated. Different studies on students' behaviors show that an interactive mode of education by engaging through a question-answering system or dialoguing is one of the most effective learning methodologies. There is a strong need to create advanced AI-enabled education tools to promote interactive learning in cybersecurity. Unfortunately, there are no publicly available standard question-answer datasets to build such systems for students and novice learners to learn cybersecurity concepts, tools, and techniques. The education course material and online question banks are unstructured and need to be validated and updated by domain experts, which is tedious when done manually. In this paper, we propose CyberGen, a novel unification of large language models (LLMs) and knowledge graphs (KG) to generate the questions and answers for cybersecurity automatically. Augmenting the structured knowledge from knowledge graphs in prompts improves factual reasoning and reduces hallucinations in LLMs. We used the knowledge triples from cybersecurity knowledge graphs (AISecKG) to design prompts for ChatGPT and generate questions and answers using different prompting techniques. Our question-answer dataset, CyberQ, contains around 4k pairs of questions and answers. The domain expert manually evaluated the random samples for consistency and correctness. We train the generative model using the CyberQ dataset for question answering task. 
    more » « less