Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Herein, we report the synthesis of a new series of rigid, allmeta‐phenylene, conjugated deep‐cavity molecules, displaying high binding affinity towards buckyballs. A facile synthetic approach with an overall combined yield of approximately 53% in the last two steps has been developed using a templating strategy that combines the general structure of resorcin[4]arene and [12]cyclo‐meta‐phenylene. These two moieties are covalently linked via four acetal bonds, resulting in a glove‐like architecture.1H NMR titration experiments reveal fullerene binding affinities (Ka) exceeding ≥106 M−1. The size complementarity between fullerenes and these scaffolds maximizes CH⋯π and π⋯π interactions, and their host:guest adduct resembles a ball in a glove, hence their name as nanogloves. Fullerene recognition is tested by suspending carbon soot in a solution of nanoglove in 1,1,2,2‐tetrachloroethane, where more than a dozen fullerenes are observed, ranging from C60to C96.more » « less
-
Crystals of 10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene (BP4VA) show heat-induced chromism and luminescence. Structural changes are described using variable-temperature synchrotron single-crystal X-ray diffraction, microscopy, and molecular modeling.more » « lessFree, publicly-accessible full text available October 16, 2026
-
Transient nanoclusters in aqueous ZnSO4electrolytes are revealed with X-ray scattering and molecular dynamics simulations. These nanoclusters exhibit diverse sizes and geometries, influencing ion correlations and transport properties.more » « lessFree, publicly-accessible full text available October 6, 2026
-
Free, publicly-accessible full text available July 14, 2026
-
Free, publicly-accessible full text available June 26, 2026
-
Free, publicly-accessible full text available June 4, 2026
-
The rectangular cyclobutadiene (CBD, C4H4) is a unique moiety for building nonbenzenoid polycyclic conjugated hydrocarbons with interesting electron‐accepting properties. Herein, the investigation on chemical reduction of several CBD‐containing polycyclic hydrocarbons with increasing conjugation length is reported: biphenylene (C12H8), dimethyl[2]naphthalene (C22H16), and tetramethyl‐dibenzo‐[3]phenylene (C30H22). The two‐step sequential reduction is first demonstrated by in situ spectroscopic investigation and then confirmed by the isolation of single crystals of the reduced products. The X‐ray crystallographic analysis reveals the formation of several mono‐ and doubly reduced products in solvent‐separated and complexed forms. The crystal structures for both neutral parents and corresponding reduced products unravel the changes in bond alternation in each ring of the fused systems. Density functional theory (DFT) and nucleus‐independent chemical shift (NICS) scan calculations reveal that the two‐electron addition reduces the aromatic character in the benzenoid rings but has minor influence on the antiaromatic CBD rings.more » « less
An official website of the United States government
