- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Fry, Kevin (2)
-
Panigrahi, Snigdha (2)
-
Taylor, Jonathan (2)
-
Liu, S (1)
-
Panigrahi, S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Loh, Po-Ling (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Liu, S; Panigrahi, S (, Journal of Machine Learning Research)Loh, Po-Ling (Ed.)When data are distributed across multiple sites or machines rather than centralized in one location, researchers face the challenge of extracting meaningful information without directly sharing individual data points. While there are many distributed methods for point estimation using sparse regression, few options are available for estimating uncertainties or conducting hypothesis tests based on the estimated sparsity. In this paper, we introduce a procedure for performing selective inference with distributed data. We consider a scenario where each local machine solves a lasso problem and communicates the selected predictors to a central machine. The central machine then aggregates these selected predictors to form a generalized linear model (GLM). Our goal is to provide valid inference for the selected GLM while reusing data that have been used in the model selection process. Our proposed procedure only requires low-dimensional summary statistics from local machines, thus keeping communication costs low and preserving the privacy of individual data sets. Furthermore, this procedure can be applied in scenarios where model selection is repeatedly conducted on randomly subsampled data sets, addressing the p-value lottery problem linked with model selection. We demonstrate the effectiveness of our approach through simulations and an analysis of a medical data set on ICU admissions.more » « less
-
Panigrahi, Snigdha; Fry, Kevin; Taylor, Jonathan (, Biometrika)We introduce a pivot for exact selective inference with randomization. Not only does our pivot lead to exact inference in Gaussian regression models, but it is also available in closed form. We reduce this problem to inference for a bivariate truncated Gaussian variable. By doing so, we give up some power that is achieved with approximate maximum likelihood estimation in Panigrahi & Taylor (2023). Yet our pivot always produces narrower confidence intervals than a closely related data-splitting procedure. We investigate the trade-off between power and exact selective inference on simulated datasets and an HIV drug resistance dataset.more » « less
An official website of the United States government

Full Text Available