- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Aguirre, Alejandro (1)
-
Birkedal, Lars (1)
-
Gregersen, Simon Oddershede (1)
-
Haselwarter, Philipp G (1)
-
Li, Kwing Hei (1)
-
Tassarotti, Joseph (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Properties such as provable security and correctness for randomized programs are naturally expressed relationally as approximate equivalences. As a result, a number of relational program logics have been developed to reason about such approximate equivalences of probabilistic programs. However, existing approximate relational logics are mostly restricted to first-order programs without general state. In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits in the relational setting to reason about relational approximation, which allows for expressive notions of modularity and composition, a range of new approximate relational rules, and an internalization of a standard limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of the results have been mechanized in the Coq proof assistant and the Iris separation logic framework.more » « lessFree, publicly-accessible full text available January 7, 2026
An official website of the United States government
