skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2338323

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Infrared spectroscopy is a powerful tool for identifying biomolecules. In biological systems, infrared spectra provide information on structure, reaction mechanisms, and conformational change of biomolecules. However, the promise of applying infrared imaging to biological systems has been hampered by low spatial resolution and the overwhelming water background arising from the aqueous nature of in cell andin vivowork. Recently, optical photothermal infrared microscopy (OPTIR) has overcome these barriers and achieved both spatially and spectrally resolved images of live cells and organisms. Here, we determine the most effective modes of collection for work in biological samples. We examine three cell lines (Huh-7, differentiated 3T3-L1, and U2OS) and three organisms (E. coli, tardigrades, and zebrafish). Our results suggest that the information provided by multifrequency imaging is comparable to hyperspectral imaging while reducing imaging times twenty-fold. We also explore the utility of IR active probes, including global and site-specific probes, for tracking metabolic pathways and protein localization, structure, and local environment. Our findings illustrate the versatility of OPTIR, and together, provide a direction for future dynamic imaging of living cells and organisms. 
    more » « less