- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
04
- Author / Contributor
- Filter by Author / Creator
-
-
Micheli, Giacomo (4)
-
Darwish, Mohamed O (1)
-
Goksel, Vefa (1)
-
Jaindungarwal, Anuvrat (1)
-
Pallozzi_Lavorante, Vincenzo (1)
-
Pallozzi Lavorante, Vincenzo (1)
-
Shukul, Abhi (1)
-
Smith, Noah (1)
-
Vaghasiya, Divyesh (1)
-
Waitkevich, Phillip (1)
-
Zhao, Shujun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Micheli, Giacomo; Pallozzi_Lavorante, Vincenzo; Shukul, Abhi; Smith, Noah (, Designs, Codes and Cryptography)Free, publicly-accessible full text available April 5, 2026
-
Darwish, Mohamed O; Jaindungarwal, Anuvrat; Micheli, Giacomo; Vaghasiya, Divyesh; Zhao, Shujun (, Journal of Algebra and Its Applications)Let [Formula: see text] be a prime power and [Formula: see text]. In this paper we complete the classification of good polynomials of degree [Formula: see text] that achieve the best possible asymptotics (with an explicit error term) for the number of totally split places. Moreover, for degrees up to [Formula: see text], we provide an explicit lower bound and an asymptotic estimate for the number of totally split places of [Formula: see text]. Finally, we prove the general fact that the number [Formula: see text] of [Formula: see text] for which [Formula: see text] splits obeys a linear recurring sequence. For any [Formula: see text], this allows for the computation of [Formula: see text] for large [Formula: see text] by only computing a recurrence sequence over [Formula: see text].more » « lessFree, publicly-accessible full text available March 25, 2026
-
Micheli, Giacomo; Pallozzi Lavorante, Vincenzo; Waitkevich, Phillip (, Designs, Codes and Cryptography)Free, publicly-accessible full text available December 27, 2025
An official website of the United States government
