skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2338623

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Mobile devices with dynamic refresh rate (DRR) switching displays have recently become increasingly common. For power optimization, these devices switch to lower refresh rates when idling, and switch to higher refresh rates when the content displayed requires smoother transitions. However, the security and privacy vulnerabilities of DRR switching have not been investigated properly. In this paper, we propose a novel attack vector called RefreshChannels that exploits DRR switching capabilities for mobile device attacks. Specifically, we first create a covert channel between two colluding apps that are able to stealthily share users' private information by modulating the data with the refresh rates, bypassing the OS sandboxing and isolation measures. Second, we further extend its applicability by creating a covert channel between a malicious app and either a phishing webpage or a malicious advertisement on a benign webpage. Our extensive evaluations on five popular mobile devices from four different vendors demonstrate the effectiveness and widespread impacts of these attacks. Finally, we investigate several countermeasures, such as restricting access to refresh rates, and find they are inadequate for thwarting RefreshChannels due to DDR's unique characteristics 
    more » « less