skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2339748

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Neural interface technologies are increasingly evolving towards bio-inspired approaches to enhance integration and long-term functionality. Recent strategies merge soft materials with tissue engineering to realize biologically-active and/or cell-containing living layers at the tissue-device interface that enable seamless biointegration and novel cell-mediated therapeutic opportunities. This review maps the field of bio-inspired electronics and discusses key recent developments in tissue-like and regenerative bioelectronics, from soft biomaterials and surface-functionalized bioactive coatings to cell-containing ‘biohybrid’ and ‘all-living’ interfaces. We define and contextualize key terminology in this emerging field and highlight how biological and living components can bridge the gap to clinical translation. 
    more » « less
  2. Abstract Transparent microelectrode arrays have proven useful in neural sensing, offering a clear interface for monitoring brain activity without compromising high spatial and temporal resolution. The current landscape of transparent electrode technology faces challenges in developing durable, highly transparent electrodes while maintaining low interface impedance and prioritizing scalable processing and fabrication methods. To address these limitations, we introduce artifact‐resistant transparent MXene microelectrode arrays optimized for high spatiotemporal resolution recording of neural activity. With 60% transmittance at 550 nm, these arrays enable simultaneous imaging and electrophysiology for multimodal neural mapping. Electrochemical characterization shows low impedance of 563 ± 99 kΩ at 1 kHz and a charge storage capacity of 58 mC cm⁻² without chemical doping. In vivo experiments in rodent models demonstrate the transparent arrays' functionality and performance. In a rodent model of chemically‐induced epileptiform activity, we tracked ictal wavefronts via calcium imaging while simultaneously recording seizure onset. In the rat barrel cortex, we recorded multi‐unit activity across cortical depths, showing the feasibility of recording high‐frequency electrophysiological activity. The transparency and optical absorption properties of Ti₃C₂Tx MXene microelectrodes enable high‐quality recordings and simultaneous light‐based stimulation and imaging without contamination from light‐induced artifacts. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026