skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2339784

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shared logs offer linearizable total order across storage shards. However, they enforce this order eagerly upon ingestion, leading to high latencies. We observe that in many modern shared-log applications, while linearizable ordering is necessary, it is not required eagerly when ingesting data but only later when data is consumed. Further, readers are naturally decoupled in time from writers in these applications. Based on this insight, we propose LazyLog, a novel shared log abstraction. LazyLog lazily binds records (across shards) to linearizable global positions and enforces this before a log position can be read. Such lazy ordering enables low ingestion latencies. Given the time decoupling, LazyLog can establish the order well before reads arrive, minimizing overhead upon reads. We build two LazyLog systems that provide linearizable total order across shards. Our experiments show that LazyLog systems deliver significantly lower latencies than conventional, eager-ordering shared logs. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025