skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2339927

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary The environmental responsiveness of the plant epigenome is essential for spatiotemporally precise gene regulation, enabling plants to adapt to external cues. Elucidating the mechanisms underlying this responsiveness is therefore fundamental to deciphering the molecular logic of plant‐environment interactions. In this review, we highlight the dynamic regulation of the plant epigenome by the hormone jasmonic acid (JA), which orchestrates immune and developmental responses. Our understanding of JA‐induced epigenome reprogramming has expanded significantly in recent years, and these insights can serve as a blueprint for other environmental response pathways. The hallmarks of an environmentally responsive epigenome will be emphasized, focusing on the roles of transcription factors as epigenome architects and on three‐dimensional chromatin reorganization as an emerging hallmark of epigenome responsiveness. We envision that the general principles of cue‐induced epigenome reprogramming outlined here will guide future studies across diverse cues and species. 
    more » « less
    Free, publicly-accessible full text available December 21, 2026
  2. Abstract Assessing the dynamics of chromatin features and transcription factor (TF) binding at scale remains a significant challenge in plants. Here, we present PHILO (Plant HIgh-throughput LOw input) ChIP-seq, a high-throughput ChIP-seq platform that enables the cost-effective and extensive capture of TF binding and genome-wide distributions of histone modifications. The PHILO ChIP-seq pipeline is adaptable to many plant species, requires very little starting material (1mg), and provides the option to use MNase (micrococcal nuclease) for chromatin fragmentation. By employing H3K9ac PHILO ChIP-seq on eight Arabidopsis thaliana jasmonic acid (JA) pathway mutants, with the simultaneous processing of over 100 samples, we not only recapitulated but also expanded the current understanding of the intricate interplay between the master TFs MYC2/3/4 and various chromatin regulators. Additionally, our analyses brought to light previously unknown histone acetylation patterns within the regulatory regions of MYC2 target genes in Arabidopsis, which is also conserved in tomato (Solanum lycopersicum). In summary, our PHILO ChIP-seq platform demonstrates its high effectiveness in investigating TF binding and chromatin dynamics on a large scale in plants, paving the way for the cost-efficient realization of complex experimental setups. 
    more » « less
  3. Plants are exquisitely responsive to their local light and temperature environment utilizing these environmental cues to modulate their developmental pathways and adjust growth patterns. This responsiveness is primarily achieved by the intricate interplay between the photoreceptor phyB (phytochrome B) and PIF (PHYTOCHROME INTERACTING FACTORs) transcription factors (TFs), forming a pivotal signaling nexus. phyB and PIFs co-associate in photobodies (PBs) and depending on environmental conditions, PIFs can dissociate from PBs to orchestrate gene expression. Until recently, the mechanisms governing epigenome modifications subsequent to PIF binding to target genes remained elusive. This mini review sheds light on the emerging role of PIFs in mediating epigenome reprogramming by recruiting chromatin regulators (CRs). The formation of numerous different PIF-CR complexes enables precise temporal and spatial control over the gene regulatory networks (GRNs) governing plant-environment interactions. We refer to PIFs as epigenome landscapers, as while they do not directly reprogram the epigenome, they act as critical sequence-specific recruitment platforms for CRs. Intriguingly, in the absence of PIFs, the efficacy of epigenome reprogramming is largely compromised in light and temperature-controlled processes. We have thoroughly examined the composition and function of known PIF-CR complexes and will explore also unanswered questions regarding the precise of locations PIF-mediated epigenome reprogramming within genes, nuclei, and plants. 
    more » « less