- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
03
- Author / Contributor
- Filter by Author / Creator
-
-
Lu, Qin (3)
-
Xu, Jinwen (2)
-
Bar-Shalom, Yaakov (1)
-
Chen, Jiayu (1)
-
Dou, Fei (1)
-
Giannakis, Georgios B (1)
-
Phillips, Bradley G (1)
-
Pitafi, Zaid Farooq (1)
-
Song, WenZhan (1)
-
Song, Yingjian (1)
-
Xiang, Haotian (1)
-
Yang, He (1)
-
Zeng, Zixuan (1)
-
Zhang, Xiang (1)
-
Zhang, Yida (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 7, 2026
-
Song, Yingjian; Xiang, Haotian; Zeng, Zixuan; Chen, Jiayu; Zhang, Yida; Pitafi, Zaid Farooq; Yang, He; Lu, Qin; Zhang, Xiang; Phillips, Bradley G; et al (, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies)In-bed postures offer valuable information about an individual's sleep quality and overall health conditions, particularly for patients with sleep apnea. However, current in-bed posture classification systems lack privacy-friendly and easy-to-install options. Furthermore, existing solutions do not consider variations between patients and are typically trained only once, neglecting the utilization of time consistency and unlabeled data from new patients. To address these limitations, this paper builds on a seismic sensor to introduce a novel sleep posture framework, which comprises two main components, namely, the Multi-Granularity Supervised Contrastive Learning (MGSCL) module and the ensemble Online Adaptation (oa) module. Unlike most existing contrastive learning frameworks that operate at the sample level, MGSCL leverages multi-granular information, operating not only at the sample level but also at the group level. The oa module enables the model to adapt to new patient data while ensuring time consistency in sleep posture predictions. Additionally, it quantifies model uncertainty to generate weighted predictions, further enhancing performance. Evaluated on a dataset of 100 patients collected at a clinical research center, MGSCLoa achieved an average accuracy of 91.67% and an average F1 score of 91.53% with only 40 seconds of labeled data per posture. In a Phase 2 evaluation with 11 participants over 13 nights in home settings, the framework reached an average accuracy of 85.37% and a weighted F1 score of 83.59% using just 3 minutes of labeled data per common posture for each participant. These results underscore the potential of seismic sensor-based in-bed posture classification for assessing sleep quality and related health conditions.more » « lessFree, publicly-accessible full text available June 9, 2026
-
Xu, Jinwen; Lu, Qin; Giannakis, Georgios B (, IEEE)Free, publicly-accessible full text available April 6, 2026
An official website of the United States government
