skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2343286

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article studies two particular algorithms, a relaxation least squares algorithm and a relaxation Newton iteration scheme, for reconstructing unknown parameters in dissipative dynamical systems. Both algorithms are based on a continuous data assimilation (CDA) algorithm for state reconstruction of Azouaniet al(2014J. Nonlinear Sci.24277–304). Due to the CDA origins of these parameter recovery algorithms, these schemes provide on-the-fly reconstruction, that is, as data is collected, of unknown state and parameters simultaneously. It is shown how both algorithms give way to a robust general framework for simultaneous state and parameter estimation. In particular, we develop a general theory, applicable to a large class of dissipative dynamical systems, which identifies structural and algorithmic conditions under which the proposed algorithms achieve reconstruction of the true parameters. The algorithms are implemented on a high-dimensional two-layer Lorenz 96 model, where the theoretical conditions of the general framework are explicitly verifiable. They are also implemented on the two-dimensional Rayleigh–Bénard convection system to demonstrate the applicability of the algorithms beyond the finite-dimensional setting. In each case, systematic numerical experiments are carried out probing the efficacy of the proposed algorithms, in addition to the apparent benefits and drawbacks between them. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Free, publicly-accessible full text available September 1, 2026