skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2343288

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gerardo_Oliva, J; Ignacio_del_Cueto, J; Drago, E (Ed.)
    This paper directly links the abstract geometry of structural form-finding to the fabrication-aware design of discrete shells and spatial structures for 3D concrete printing through a bidirectional approach, where it creates surface-toolpath twins for the components, optimizing the buildability of the parts and their surface quality. The design-to-production process of efficient structural systems for 3D printing is often a top-down unidirectional process involving form-finding, segmentation, and slicing, where results face printability challenges due to incompatibility between the initial geometry and the printing system, as well as material constraints. We introduce surface-toolpath twins that can be interconverted and synchronized through efficient slicing and surface reconstruction algorithms to allow the combination of optimizations and modifications on either part of the twin in flexible orders. We provide two core methods for fabrication rationalization: (1) global buildability optimization on the surface mesh by normal-driven shape stylization and (2) local surface quality optimization on toolpath curves through intra-layer iterative adjustments. The result is a bidirectional design-to-production process where one can plug and play different form-finding results, assess and optimize their fabrication schemes, or leverage knowledge in fabrication design, model toolpath curves as sections, reconstruct surfaces, and merge them into form-finding and segmentation in an inverse way. The proposed framework enables the integration of form-finding expertise with fabrication-oriented design, allowing the realization of spatial shell structures with complex topologies or extreme geometrical features through 3D concrete printing. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026