skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2343577

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Architected Instability-based Metamaterials (AIMs) composed of curved beams can exhibit multi-stable geometric phase transformations. By tailoring geometry and topology, AIMs can accommodate large reversible deformations while dissipating energy beyond the capabilities of conventional materials. These exceptional mechanical properties are attractive for aerospace engineering applications, including energy-absorbing components in landing gears, impact-resistant protective structures, and vibration-damping systems. Nevertheless, this very mechanism that enables reversible energy dissipation also limits its capacity, because geometric phase transformations like snap-through buckling occur at low specific strength. Thus, the reversible energy dissipation capability cannot be easily leveraged in aerospace applications. In this work, we propose a theoretical and numerical modeling integrated approach to manipulate the out-of-plane stiffness distribution of curved beams. Compared to the conventional AIMs with uniform curved beams, the strength of the proposed beam configuration can be largely improved, while the local maximum strain remained relatively lower during phase transformations. Finite element analysis and experiments show this approach mitigates the local strain concentration effects of AIMs. Without inducing unreversible plastic deformation, the mechanical properties like the maximum peak strength, trapped energy during compression, and energy dissipation under cyclic loading can be increased by 62.1%, 82.5%, and 45.6%, respectively. 
    more » « less
    Free, publicly-accessible full text available May 5, 2026
  2. Free, publicly-accessible full text available May 20, 2026