skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2344576

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose an analytic approach for the steady-state dynamics of Markov processes on locally tree-like graphs. It is based on time-translation invariant probability distributions for edge trajectories, which we encode in terms of infinite matrix products. For homogeneous ensembles on regular graphs, the distribution is parametrized by a single d×d×r^2 tensor, where r is the number of states per variable, and d is the matrix-product bond dimension. While the method becomes exact in the large-d limit, it typically provides highly accurate results even for small bond dimensions d. The d^2r^2 parameters are determined by solving a fixed point equation, for which we provide an efficient belief-propagation procedure. We apply this approach to a variety of models, including Ising-Glauber dynamics with symmetric and asymmetric couplings, as well as the SIS model. Even for small d, the results are compatible with Monte Carlo estimates and accurately reproduce known exact solutions. The method provides access to precise temporal correlations, which, in some regimes, would be virtually impossible to estimate by sampling. 
    more » « less
    Free, publicly-accessible full text available August 18, 2026