Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer’s disease and Lewy Body disease are detectable by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness. As part of their neurologic evaluation at Mayo Clinic, 11 001 patients underwent 12 176 routine, standard 10–20 scalp EEG studies. From these raw EEGs, we developed an algorithm based on posterior alpha activity and eye movement to automatically select awake-eyes-closed epochs and estimated average spectral power density (SPD) between 1 and 45 Hz for each channel. We then created a three-dimensional (3D) tensor (record × channel × frequency) and applied a canonical polyadic decomposition to extract the top six factors. We further identified an independent cohort of patients meeting consensus criteria for mild cognitive impairment (30) or dementia (39) due to Alzheimer’s disease and dementia with Lewy Bodies (31) and similarly aged cognitively normal controls (36). We evaluated the ability of the six factors in differentiating these subgroups using a Naïve Bayes classification approach and assessed for linear associations between factor loadings and Kokmen short test of mental status scores, fluorodeoxyglucose (FDG) PET uptake ratios and CSF Alzheimer’s Disease biomarker measures. Factors represented biologically meaningful brain activities including posterior alpha rhythm, anterior delta/theta rhythms and centroparietal beta, which correlated with patient age and EEG dysrhythmia grade. These factors were also able to distinguish patients from controls with a moderate to high degree of accuracy (Area Under the Curve (AUC) 0.59–0.91) and Alzheimer’s disease dementia from dementia with Lewy Bodies (AUC 0.61). Furthermore, relevant EEG features correlated with cognitive test performance, PET metabolism and CSF AB42 measures in the Alzheimer’s subgroup. This study demonstrates that data-driven approaches can extract biologically meaningful features from population-level clinical EEGs without artefact rejection or a-priori selection of channels or frequency bands. With continued development, such data-driven methods may improve the clinical utility of EEG in memory care by assisting in early identification of mild cognitive impairment and differentiating between different neurodegenerative causes of cognitive impairment.more » « less
-
Tensor Decomposition of Large-scale Clinical EEGs Reveals Interpretable Patterns of Brain PhysiologyIdentifying abnormal patterns in electroencephalography (EEG) remains the cornerstone of diagnosing several neurological diseases. The current clinical EEG review process relies heavily on expert visual review, which is unscalable and error-prone. In an effort to augment the expert review process, there is a significant interest in mining population-level EEG patterns using unsupervised approaches. Current approaches rely either on two-dimensional decompositions (e.g., principal and independent component analyses) or deep representation learning (e.g., auto-encoders, self-supervision). However, most approaches do not leverage the natural multi-dimensional structure of EEGs and lack interpretability. In this study, we propose a tensor decomposition approach using the canonical polyadic decomposition to discover a parsimonious set of population-level EEG patterns, retaining the natural multi-dimensional structure of EEG recordings (time×space×frequency) . We then validate their clinical value using a cohort of patients with varying stages of cognitive impairment. Our results show that the discovered patterns reflect physiologically meaningful features and accurately classify the stages of cognitive impairment (healthy vs mild cognitive impairment vs Alzheimer's dementia) with substantially fewer features compared to classical and deep learning-based baselines. We conclude that the decomposition of population-level EEG tensors recovers expert-interpretable EEG patterns that can aid in studying smaller specialized clinical cohorts.more » « less
An official website of the United States government
