skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2346977

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a novel method for systematically assessing the impact of the central potential fluctuations associated with bursty outflows on the structures of dark matter halos for classical and ultrafaint dwarf (UFD) galaxies. Specifically, we use dark-matter-only simulations augmented with a manually added massive particle that modifies the central potential and approximately accounts for a centrally concentrated baryonic component. This approach enables precise control over the magnitude, frequency, and timing of rapid outflow events. We demonstrate that this method can reproduce the established result of core formation for systems that undergo multiple episodes of bursty outflows. In contrast, we also find that equivalent models involving only single (or a small number of) burst episodes do not form cores with the same efficacy. This is important because many UFDs in the local Universe are observed to have tightly constrained star formation histories that are best described by a single early burst of star formation. Using a suite of cosmological zoom-in simulations, we identify the regimes in which single bursts can and cannot form a cored density profile. Our results suggest that it may be difficult to form cores in UFD-mass systems with a single early burst, regardless of its magnitude. 
    more » « less
  2. Abstract Integral field units have extended our knowledge of galactic properties to kiloparsec (or, sometimes, even smaller) patches of galaxies. These scales are where the physics driving galaxy evolution (feedback, chemical enrichment, etc.) take place. Quantifying the spatially resolved properties of galaxies, both observationally and theoretically, is therefore critical to our understanding of galaxy evolution. To this end, we investigate spatially resolved scaling relations within galaxies ofM > 109.0atz= 0 in IllustrisTNG. We examine both the resolved star formation main sequence (rSFMS) and the resolved mass–metallicity relation (rMZR) using 1 kpc × 1 kpc maps. We find that the rSFMS in IllustrisTNG is well described by a power law but is significantly shallower than the observed rSFMS. However, the disagreement between the rSFMS of IllustrisTNG and observations is likely driven by an overestimation of AGN feedback in IllustrisTNG for the higher-mass hosts. Conversely, the rMZR for IllustrisTNG has very good agreement with observations. Furthermore, we argue that the rSFMS is an indirect result of the Schmidt–Kennicutt law and local gas relation, which are both independent of host galaxy properties. Finally, we expand upon a localized leaky-box model to study the evolution of idealized spaxels and find that it provides a good description of these resolved relations. The degree of agreement, however, between idealized spaxels and simulated spaxels depends on the “net” outflow rate for the spaxel, and the IllustrisTNG scaling relations indicate a preference for a low net outflow rate. 
    more » « less
  3. ABSTRACT We present an investigation into the quenching of simulated galaxies across cosmic time, honing in on the role played by both intrinsic and environmental mechanisms at different epochs. In anticipation of VLT-MOONRISE, Very Large Telescope MOONS (Multi-Object Optical and Near-infrared Spectrograph) Redshift-Intensive Survey Experiment, the first wide-field spectroscopic galaxy survey to target cosmic noon, this work provides clear predictions to compare to the future observations. We investigate the quenching of centrals, high-mass satellites, and low-mass satellites from two cosmological hydrodynamical simulations: Illustris The Next Generation and Evolution and Assembly of GaLaxies and their Environment. Satellites are split according to bespoke mass thresholds, designed to separate environmental and intrinsic quenching mechanisms. To determine the best parameter for predicting quiescence, we apply a Random Forest classification analysis for each galaxy class at each epoch. The Random Forest classification determines supermassive black hole mass as the best predictor of quiescence in centrals and high-mass satellites. Alternatively, the quenching of low-mass satellites is best predicted by group halo mass, at all epochs. Additionally, we investigate the evolution in the dependence of the quenched fraction with various parameters, revealing a more complex picture. There is strong evidence for the rejuvenation of star formation from z = 2 to z = 0 in EAGLE, but not in IllustrisTNG. The starkest discrepancy between simulations rests in the mass threshold analysis. While IllustrisTNG predicts the existence of environmentally quenched satellites visible within the survey limits of MOONRISE, EAGLE does not. Hence, MOONRISE will provide critical data that is needed to evaluate current models, and constrain future models, of quenching processes. 
    more » « less
  4. Abstract The metallicity of galaxies, and its variation with galactocentric radius, provides key insights into the formation histories of galaxies and the physical processes driving their evolution. In this work, we analyze the radial metallicity gradients of star-forming galaxies in the EAGLE, Illustris, IllustrisTNG, and SIMBA cosmological simulations across broad mass (108.0M≤M ≲ 1012.0M) and redshift (0 ≤z≤ 8) ranges. We find that all simulations predict strong negative (i.e., radially decreasing) metallicity gradients at early cosmic times, likely due to their similar treatments of relatively smooth stellar feedback not providing sufficient mixing to quickly flatten gradients. The strongest redshift evolution occurs in galaxies with stellar masses of 1010.0–1011.0M, while galaxies with stellar mass < 1010Mand >1011Mexhibit weaker redshift evolution. Our result of negative gradients at high redshift contrast with the many positive and flat gradients in the 1 < z < 4 observational literature. Atz > 6, the negative gradients observed with JWST and the Atacama Large Millimeter/submillimeter Array are flatter than those in simulations, albeit with closer agreement than at lower redshift. Overall, we suggest that these smooth stellar feedback galaxy simulations may not sufficiently mix their metal content radially, and that either stronger stellar feedback or additional subgrid turbulent metal diffusion models may be required to better reproduce observed metallicity gradients. 
    more » « less
  5. Abstract We report the detection of the [Oiii] auroral line in 42 galaxies within the redshift range of 3 <z< 10. These galaxies were selected from publicly available JWST data releases, including the JADES and PRIMAL surveys, and observed using both the low-resolution PRISM/CLEAR configuration and medium-resolution gratings. The measured electron temperatures in the high-ionization regions of these galaxies range fromTe([Oiii]) = 12,000 to 24,000 K, consistent with temperatures observed in local metal-poor galaxies and previous JWST studies. In 10 galaxies, we also detect the [Oii] auroral line, allowing us to determine electron temperatures in the low-ionization regions, which range betweenTe([Oii]) = 10,830 and 20,000 K. The directTe-based metallicities of our sample span from 12 + log(O/H) = 7.2 to 8.4, indicating these high-redshift galaxies are relatively metal-poor. By combining our sample with 25 galaxies from the literature, we expand the data set to a total of 67 galaxies within 3 <z< 10, effectively more than doubling the previous sample size for directTe-based metallicity studies. This larger data set allows us to derive empirical metallicity calibration relations based exclusively on high-redshift galaxies, using six key line ratios: R3, R2, R23, Ne3O2, O32, and O3N2. Notably, we derive a novel metallicity calibration relation for the first time using high-redshiftTe-based metallicities: R ˆ = 0.18log R2 + 0.98log R3. This new calibration significantly reduces the scatter in high-redshift galaxies compared to the R ˆ relation previously calibrated for low-redshift galaxies. 
    more » « less
  6. ABSTRACT JWST has revealed a large population of accreting black holes (BHs) in the early Universe. Recent work has shown that even after accounting for possible systematic biases, the high-z$$M_*{\!-\!}M_{\rm \rm bh}$$ relation can be above the local scaling relation by $$\gt 3\sigma$$. To understand the implications of these overmassive high-z BHs, we study the BH growth at $$z\sim 4{\!-\!}7$$ using the $$[18~\mathrm{Mpc}]^3$$BRAHMA cosmological simulations with systematic variations of heavy seed models that emulate direct collapse black hole (DCBH) formation. In our least restrictive seed model, we place $$\sim 10^5~{\rm M}_{\odot }$$ seeds in haloes with sufficient dense and metal-poor gas. To model conditions for direct collapse, we impose additional criteria based on a minimum Lyman Werner flux (LW flux $$=10~J_{21}$$), maximum gas spin, and an environmental richness criterion. The high-z BH growth in our simulations is merger dominated, with a relatively small contribution from gas accretion. The simulation that includes all the above seeding criteria fails to reproduce an overmassive high-z$$M_*{\!-\!}M_{\rm bh}$$ relation consistent with observations (by factor of $$\sim 10$$ at $$z\sim 4$$). However, more optimistic models that exclude the spin and environment based criteria are able to reproduce the observed relations if we assume $$\lesssim 750~\mathrm{Myr}$$ delay times between host galaxy mergers and subsequent BH mergers. Overall, our results suggest that current JWST observations may be explained with heavy seeding channels if their formation is more efficient than currently assumed DCBH conditions. Alternatively, we may need higher initial seed masses, additional contributions from lighter seeds to BH mergers, and / or more efficient modes for BH accretion. 
    more » « less
  7. ABSTRACT We present a new suite of over 1500 cosmological N-body simulations with varied warm dark matter (WDM) models ranging from 2.5 to 30 keV. We use these simulations to train Convolutional Neural Networks (CNNs) to infer WDM particle masses from images of DM field data. Our fiducial setup can make accurate predictions of the WDM particle mass up to 7.5 keV with an uncertainty of ±0.5 keV at a 95 per cent confidence level from (25 h−1Mpc)2 maps. We vary the image resolution, simulation resolution, redshift, and cosmology of our fiducial setup to better understand how our model is making predictions. Using these variations, we find that our models are most dependent on simulation resolution, minimally dependent on image resolution, not systematically dependent on redshift, and robust to varied cosmologies. We also find that an important feature to distinguish between WDM models is present with a linear size between 100 and 200 h−1 kpc. We compare our fiducial model to one trained on the power spectrum alone and find that our field-level model can make two times more precise predictions and can make accurate predictions to two times as massive WDM particle masses when used on the same data. Overall, we find that the field-level data can be used to accurately differentiate between WDM models and contain more information than is captured by the power spectrum. This technique can be extended to more complex DM models and opens up new opportunities to explore alternative DM models in a cosmological environment. 
    more » « less
  8. While the first “seeds” of supermassive black holes (BH) can range from ~10^2-10^6 M_\odot, the lowest mass seeds (< 10^3 M_\odot) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the z>7 BH populations for low-mass seeds. We ran two types of boxes that model ~10^3 M_\odot seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution [9 Mpc]^3 (BRAHMA-9-D3) boxes that directly resolve ~10^3 M_\odot seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume [18 Mpc]^3 (BRAHMA-18-E4), and ~[36 Mpc]^3 (BRAHMA-36-E5) boxes that seed their smallest resolvable ~10^4 & 10^5 M_\odot BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between ~10^3, and,10^7 M_\odot. The active galactic nuclei (AGN) luminosity function variations are small (factors of ~2-3) at the anticipated detection limits of potential future X-ray facilities (~10^{43} ergs/s at z~7). Our simulations predict BHs ~10-100 times heavier than the local M_* versus M_bh relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at ~1-15 kpc, with rates of ~200-2000 yr−1 for >10^3 M_\odot BHs, ~6-60 yr−1 for >10^4 M_\odot BHs, and up to ~10 yr−1 amongst >10^5 M_\odot BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models. 
    more » « less
  9. The scatter about the mass-metallicity relation (MZR) has a correlation with the star formation rate (SFR) of galaxies. The lack of evidence of evolution in correlated scatter at z ≲ 2.5 leads many to refer to the relationship between mass, metallicity, and SFR as the Fundamental Metallicity Relation (FMR). Yet, recent high-redshift (z > 3) JWST observations have challenged the fundamental (i.e. redshift-invariant) nature of the FMR. In this work, we show that the cosmological simulations Illustris, IllustrisTNG, and Evolution and Assembly of GaLaxies and their Environment (EAGLE) all predict MZRs that exhibit scatter with a secondary dependence on SFR up to z = 8. We introduce the concept of a ‘strong’ FMR, where the strength of correlated scatter does not evolve with time, and a ‘weak’ FMR, where there is some time evolution. We find that each simulation analysed has a statistically significant weak FMR – there is non-negligible evolution in the strength of the correlation with SFR. Furthermore, we show that the scatter is reduced an additional ∼10–40 per cent at z ≳ 3 when using a weak FMR, compared to assuming a strong FMR. These results highlight the importance of avoiding coarse redshift binning when assessing the FMR. 
    more » « less
  10. The metal content of galaxies provides a window into their formation in the full context of the cosmic baryon cycle. In this study, we examine the relationship between stellar mass and stellar metallicity (MZ*R) in the hydrodynamic simulations Illustris, TNG, and EAGLE (Evolution and Assembly of GaLaxies and their Environment) to understand the global properties of stellar metallicities within the feedback paradigm employed by these simulations. Interestingly, we observe significant variations in the overall normalization and redshift evolution of the MZ*R across the three simulations. However, all simulations consistently demonstrate a tertiary dependence on the specific star formation rate (sSFR) of galaxies. This finding parallels the relationship seen in both simulations and observations between stellar mass, gas-phase metallicity, and some proxy of galaxy gas content (e.g. SFR, gas fraction, and atomic gas mass). Since we find this correlation exists in all three simulations, each employing a subgrid treatment of the dense, star-forming interstellar medium (ISM) to simulate smooth stellar feedback, we interpret this result as a fairly general feature of simulations of this kind. Furthermore, with a toy analytic model, we propose that the tertiary correlation in the stellar component is sensitive to the extent of the ‘burstiness’ of feedback within galaxies. 
    more » « less