skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2347035

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Predicting the behavior of nanomaterials under various conditions presents a significant challenge due to their complex microstructures. While high-fidelity modeling techniques, such as molecular dynamics (MD) simulations, are effective, they are also computationally demanding. Machine learning (ML) models have opened new avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based on a conditional generative adversarial network (cGAN) to predict the evolution of grain boundary (GB) networks in nanocrystalline materials under mechanical loads, incorporating both morphological and atomic details. We conducted MD simulations on nanocrystalline tungsten and used the resulting ground-truth data to train our cGAN model. We assessed the performance of our cGAN model by comparing it to a Convolutional Autoencoder (ConvAE) model and examining the impact of changes in geometric morphology and loading conditions on the model's performance. Our cGAN model demonstrated high accuracy in predicting GB network evolution under a variety of conditions. This developed framework shows potential for predicting various materials' behaviors across a wide range of nanomaterials. 
    more » « less