- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Amin, Moeness (1)
-
Hamza, Syed A (1)
-
Hamza, Syed Ali (1)
-
Juretus, Kyle (1)
-
Kobak, John (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The article examines neural network learning of the sparse array configurations in optimum beamforming. Unlike iterative greedy, convex, and global optimization methods for optimum array design, deep learning enables fast reconfigurations of the sparse array in rapid dynamic propagation environments. We employ three different convolutional neural network architectures with varying simplification and parameter counts. The network is trained to select M out of N uniformly spaced antennas to achieve maximum signal-to-interference and noise ratio (SINR) beamforming. Different values of M are considered, including N = 2 M, for studying network performance under an increased number of subarray classes. We consider one desired source and one interference of arbitrary angle, and delineate the learning results for the two cases where the network is trained with the desired source assuming fixed and varying angles. We discuss the benefits of reducing the number of possible configurations due to sidelobe level reductions. It is also shown that the network performance significantly improves with data augmentations and by removing redundant array configurations which produce the same SINR.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Kobak, John; Hamza, Syed A (, IEEE/ IEEE Radar Conference 2025)Free, publicly-accessible full text available May 3, 2026
An official website of the United States government
