- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Guangfa (1)
-
Liu, Dehao (1)
-
Lu, Yanglong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The inception of physics-constrained or physics-informed machine learning represents a paradigm shift, addressing the challenges associated with data scarcity and enhancing model interpretability. This innovative approach incorporates the fundamental laws of physics as constraints, guiding the training process of machine learning models. In this work, the physics-constrained convolutional recurrent neural network is further extended for solving spatial-temporal partial differential equations with arbitrary boundary conditions. Two notable advancements are introduced: the implementation of boundary conditions as soft constraints through finite difference-based differentiation, and the establishment of an adaptive weighting mechanism for the optimal allocation of weights to various losses. These enhancements significantly augment the network's ability to manage intricate boundary conditions and expedite the training process. The efficacy of the proposed model is validated through its application to two-dimensional phase transition, fluid dynamics, and reaction-diffusion problems, which are pivotal in materials modeling. Compared to traditional physics-constrained neural networks, the physics-constrained convolutional recurrent neural network demonstrates a tenfold increase in prediction accuracy within a similar computational budget. Moreover, the model's exceptional performance in extrapolating solutions for the Burgers' equation underscores its utility. Therefore, this research establishes the physics-constrained recurrent neural network as a viable surrogate model for sophisticated spatial-temporal PDE systems, particularly beneficial in scenarios plagued by sparse and noisy datasets.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
