- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
13
- Author / Contributor
- Filter by Author / Creator
-
-
Kra, Bryna (3)
-
Cyr, Van (1)
-
Frantzikinakis, Nikos (1)
-
Host, Bernard (1)
-
Kra, B (1)
-
Moreira, J (1)
-
Moreira, Joel (1)
-
Petite, Samuel (1)
-
Richter, F (1)
-
Richter, Florian (1)
-
Robertson, D (1)
-
Robertson, Donald (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In contrast to finite arithmetic configurations, relatively little is known about which infinite patterns can be found in every set of natural numbers with positive density. Building on recent advances showing infinite sumsets can be found, we explore numerous open problems and obstructions to finding other infinite configurations in every set of natural numbers with positive density.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Cyr, Van; Kra, Bryna; Petite, Samuel (, Mathematische Zeitschrift)Free, publicly-accessible full text available January 1, 2026
-
Frantzikinakis, Nikos; Host, Bernard; Kra, Bryna (, Proceedings of the American Mathematical Society)A subset of integers is a set of Bohr recurrence if every rotation on returns arbitrarily close to zero under some non-zero multiple of . We show that the set is a set of Bohr recurrence. This is a particular case of a more general statement about images of such sets under any integer polynomial with zero constant term. We also show that if is a real polynomial with at least one non-constant irrational coefficient, then the set is dense in , thus providing a joint generalization of two well-known results, one of Furstenberg and one of Weyl.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
