- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Yuan, Xu (3)
-
Lou, Jiadong (2)
-
Tzeng, Nian-Feng (2)
-
Gong, Neil Zhenqiang (1)
-
Hua, Yang (1)
-
Li, Jian (1)
-
Lin, Fudong (1)
-
Wang, Hao (1)
-
Yu, Hanfei (1)
-
Yuan, Xingliang (1)
-
Zhang, Rui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 12, 2026
-
Lin, Fudong; Lou, Jiadong; Yuan, Xu; Tzeng, Nian-Feng (, ACM)
-
Yu, Hanfei; Li, Jian; Hua, Yang; Yuan, Xu; Wang, Hao (, Proceedings of the AAAI Conference on Artificial Intelligence)Deep reinforcement learning (DRL) has gained immense success in many applications, including gaming AI, robotics, and system scheduling. Distributed algorithms and architectures have been vastly proposed (e.g., actor-learner architecture) to accelerate DRL training with large-scale server-based clusters. However, training on-policy algorithms with the actor-learner architecture unavoidably induces resource wasting due to synchronization between learners and actors, thus resulting in significantly extra billing. As a promising alternative, serverless computing naturally fits on-policy synchronization and alleviates resource wasting in distributed DRL training with pay-as-you-go pricing. Yet, none has leveraged serverless computing to facilitate DRL training. This paper proposes MinionsRL, the first serverless distributed DRL training framework that aims to accelerate DRL training- and cost-efficiency with dynamic actor scaling. We prototype MinionsRL on top of Microsoft Azure Container Instances and evaluate it with popular DRL tasks from OpenAI Gym. Extensive experiments show that MinionsRL reduces total training time by up to 52% and training cost by 86% compared to latest solutions.more » « less
An official website of the United States government
