- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Michailidis, George (2)
-
Bai, Peiliang (1)
-
Kaul, Abhishek (1)
-
Safikhani, Abolfazl (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the problem of constructing confidence intervals for the locations of change points in a high-dimensional mean shift model. We develop a locally refitted least squares estimator and obtain component-wise and simultaneous rates of estimation of change points. The simultaneous rate is the sharpest available by at least a factor of log p, while the component-wise one is optimal. These results enable existence of limiting distributions for the locations of the change points. Subsequently, component-wise distributions are characterized under both vanishing and non-vanishing jump size regimes, while joint distributions of change point estimates are characterized under the latter regime, which also yields asymptotic independence of these estimates. We provide the relationship between these distributions, which allows construction of regime adaptive confidence intervals. All results are established under a high dimensional scaling, in the presence of diverging number of change points. They are illustrated on synthetic data and on sensor measurements from smartphones for activity recognition.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Bai, Peiliang; Safikhani, Abolfazl; Michailidis, George (, Journal of the American Statistical Association)
An official website of the United States government
