Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 20, 2026
- 
            Free, publicly-accessible full text available January 10, 2026
- 
            Free, publicly-accessible full text available December 11, 2025
- 
            Clustering plays a crucial role in computer science, facilitating data analysis and problem-solving across numerous fields. By partitioning large datasets into meaningful groups, clustering reveals hidden structures and relationships within the data, aiding tasks such as unsupervised learning, classification, anomaly detection, and recommendation systems. Particularly in relational databases, where data is distributed across multiple tables, efficient clustering is essential yet challenging due to the computational complexity of joining tables. This paper addresses this challenge by introducing efficient algorithms for k-median and k-means clustering on relational data without the need for pre-computing the join query results. For the relational k-median clustering, we propose the first efficient relative approximation algorithm. For the relational k-means clustering, our algorithm significantly improves both the approximation factor and the running time of the known relational k-means clustering algorithms, which suffer either from large constant approximation factors, or expensive running time. Given a join query q and a database instance D of O(N) tuples, for both k-median and k-means clustering on the results of q on D, we propose randomized (1+ε)γ-approximation algorithms that run in roughly O(k2Nfhw)+T_γ(k2) time, where ε ∈ (0,1) is a constant parameter decided by the user, \fhw is the fractional hyper-tree width of Q, while γ and T_γ(x) represent the approximation factor and the running time, respectively, of a traditional clustering algorithm in the standard computational setting over x points.more » « lessFree, publicly-accessible full text available November 4, 2025
- 
            Data summarization is a powerful approach to deal with large-scale data analytics, which has wide applications in web search, recommendation systems, approximate query processing, etc. It computes a small, compact summary that preserves vital properties of the original data. In this paper, we study the data summarization problem of conjunctive query results, i.e., computing a k-size subset of a conjunctive query output, for any given k>0, that optimizes a certain objective. More specifically, we are interested in two commonly studied objectives: cohesion, which measures the maximum distance between a tuple in the query result tuples and its closest tuple in the summary (k-center clustering); and diversity, which measures the pairwise distances between the summary items. A simple approach that computes the entire query output and then applies existing algorithms on top of these materialized tuples suffers from high computational complexity because the query output can be large, e.g., for a relational database of N tuples, the number of result tuples can be NO(1).We propose O(1)-approximation algorithms that compute well-representative summaries of size k in time O(N*kO(1)), or even O(N+ kO(1)) in some cases, without computing all result tuples. We also propose the first efficient (2+\eps)-approximation algorithm for the k-center clustering problem over relational data. Our main idea is to formulate a few oracles that enable us to access specific query result tuples with certain properties, to show how these oracles can be implemented efficiently, and to compute desired summaries with few invocations of these oracles.more » « lessFree, publicly-accessible full text available November 4, 2025
- 
            In this paper, we address clustering problems in scenarios where accurate direct access to the full dataset is impractical or impossible. Instead, we leverage oracle-based methods, which are particularly valuable in real-world applications where the data may be noisy, restricted due to privacy concerns or sheer volume. We utilize two oracles, the quadruplet and the distance oracle. The quadruplet oracle is a weaker oracle that only approximately compares the distances of two pairs of vertices. In practice, these oracles can be implemented using crowdsourcing or training classifiers or other predictive models. On the other hand, the distance oracle returns exactly the distance of two vertices, so it is a stronger and more expensive oracle to implement. We consider two noise models for the quadruplet oracle. In the adversarial noise model, if two pairs have similar distances, the response is chosen by an adversary. In the probabilistic noise model, the pair with the smaller distance is returned with a constant probability. We consider a set V of n vertices in a metric space that supports the quadruplet and the distance oracle. For each of the k-center, k-median, and k-means clustering problem on V, we design constant approximation algorithms that perform roughly O(nk) calls to the quadruplet oracle and O(k^2) calls to the distance oracle in both noise models. When the dataset has low intrinsic dimension, we significantly improve the approximation factors of our algorithms by performing a few additional calls to the distance oracle. We also show that for k-median and k-means clustering there is no hope to return any sublinear approximation using only the quadruplet oracle. Finally, we give constant approximation algorithms for estimating the clustering cost induced by any set of k vertices, performing roughly O(nk) calls to the quadruplet oracle and O(k^2) calls to the distance oracle.more » « lessFree, publicly-accessible full text available November 4, 2025
- 
            Potential harms from the under-representation of minorities in data, particularly in multi-modal settings, is a well-recognized concern. While there has been extensive effort in detecting such under-representation, resolution has remained a challenge. With recent generative AI advancements, large language and foundation models have emerged as versatile tools across various domains. In this paper, we propose Chameleon, a system that efficiently utilizes these tools to augment a dataset with minimal addition of synthetically generated tuples to enhance the coverage of the under-represented groups. Our system applies quality and outlier-detection tests to ensure the quality and semantic integrity of the generated tuples. In order to minimize the rejection chance of the generated tuples, we propose multiple strategies to provide a guide for the foundation model. Our experiment results, in addition to confirming the efficiency of our proposed algorithms, illustrate our approach's effectiveness, as the model's unfairness in a downstream task significantly dropped after data repair using Chameleon.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available