skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2349077

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The simplified approach to the Bose gas was introduced by Lieb in 1963 to study the ground state of systems of interacting Bosons. In a series of recent papers, it has been shown that the simplified approach exceeds earlier expectations, and gives asymptotically accurate predictions at both low and high density. In the intermediate density regime, the qualitative predictions of the simplified approach have also been found to agree very well with quantum Monte Carlo computations. Until now, the simplified approach had only been formulated for translation invariant systems, thus excluding external potentials, and non-periodic boundary conditions. In this paper, we extend the formulation of the simplified approach to a wide class of systems without translation invariance. This also allows us to study observables in translation invariant systems whose computation requires the symmetry to be broken. Such an observable is the momentum distribution, which counts the number of particles in excited states of the Laplacian. In this paper, we show how to compute the momentum distribution in the simplified approach, and show that, for the simple equation, our prediction matches up with Bogolyubov’s prediction at low densities, for momenta extending up to the inverse healing length. 
    more » « less
  2. In this paper, we prove the existence of a crystallization transition for a family of hard-core particle models on periodic graphs in arbitrary dimensions. We establish a criterion under which crystallization occurs at sufficiently high densities. The criterion is more general than that in [Jauslin, Lebowitz, Comm. Math. Phys. 364:2, 2018], as it allows models in which particles do not tile the space in the close-packing configurations, such as discrete hard-disk models. To prove crystallization, we prove that the pressure is analytic in the inverse of the fugacity for large enough complex fugacities, using Pirogov-Sinai theory. One of the main tools used for this result is the definition of a local density, based on a discrete generalization of Voronoi cells. We illustrate the criterion by proving that it applies to two examples: staircase models and the radius 2.5 hard-disk model on the square lattice. 
    more » « less