skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2349846

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We construct the Neumann function in a 1-sided chord-arc domain (i.e., a uniform domain with an Ahlfors regular boundary), and establish size and Hölder continuity estimates up to the boundary. We then obtain a Kenig-Pipher type theorem, in whichLpsolvability of the Neumann problem is shown to yield solvability inLqfor 1 <q<p, and in the Hardy spaceH1, in 2-sided chord-arc domains, under suitable background hypotheses. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  2. Abstract We prove that if a parabolic Lipschitz (i.e., Lip(1,1/2)) graph domain has the property that its caloric measure is parabolic$$A_{\infty }$$ A with respect to surface measure (which property is in turn equivalent to$$\mathrm{L}^{p}$$ L p solvability of the Dirichlet problem for some finite$$p$$ p ), then the function defining the graph has a half-order time derivative in the space of (parabolic) bounded mean oscillation. Equivalently, we prove that the$$A_{\infty }$$ A property of caloric measure implies, in this case, that the boundary is parabolic uniformly rectifiable. Consequently, by combining our result with the work of Lewis and Murray we resolve a long standing open problem in the field by characterizing those parabolic Lipschitz graph domains for which one has$$\mathrm{L}^{p}$$ L p solvability (for some$$p <\infty $$ p < ) of the Dirichlet problem for the heat equation. The key idea of our proof is to view the level sets of the Green function as extensions of the original boundary graph for which we can prove (local) square function estimates of Littlewood-Paley type. 
    more » « less