- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Benny, Jonathan (2)
-
Liu, Jianbo (2)
-
Lee, Varonica (1)
-
Moe, May_Myat (1)
-
Saito, Toru (1)
-
Tsai, Midas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract DNA–protein crosslinks (DPCs) remain as a poorly understood DNA lesion. Herein, crosslinking between guanosine and lysine was explored using a model system comprising 9-methylguanine (9MG) and CH3NH2. Crosslinking was induced by one-electron oxidized 9MG•+ radical cations and doubly oxidized [9MG – HN2]+ cations, and analyzed as a function of reaction energy using an electrospray ionization tandem mass spectrometer. Experiment was augmented by dynamics simulations and kinetics modeling. Alongside the formation of X-NH2CH3[9MG]•+ (X = C2, C8) via direct addition, 8-CH2NH2[9MG + HN7]+ was discovered as a new crosslink between 9MG•+ and CH3NH2. This crosslink results from methyl–hydrogen abstraction of CH3NH2 by the N7 of 9MG•+, followed by adding •CH2NH2 to [9MG + HN7]+. Notably, crosslinking is dramatically enhanced between [9MG – HN2]+ and CH3NH2, yielding major products X-+NH2CH3[9MG – HN2] (X = N2, N3, C5, and C8, along with their proton tautomers), which form from the direct CH3NH2 addition to [9MG – HN2]+, and minor products X-CH2NH2[9MG – HN2 + HO6]+ (X = N2, N3, C5, N7, and C8), which arise from the combination of methyl–hydrogen abstraction products. This work dissected and distinguished the roles of one- versus two-electron oxidized guanosine in DPC formation, offering novel insights into oxidative DNA damage.more » « less
-
Benny, Jonathan; Saito, Toru; Liu, Jianbo (, The Journal of Chemical Physics)As a precursor to various reactive nitrogen species formed in biological systems, nitric oxide (•NO) participates in numerous processes, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. Forming guanine radical cations is another common DNA lesion resulting from ionization and oxidation damage. As such, the interaction of •NO with guanine radical cations (G•+) may contribute to the radiosensitization of •NO. An intriguing aspect of this process is the participation of multiple spin configurations in the reaction, including open-shell singlet 1,OS[G•+(↑)⋯(↓)•NO], closed-shell singlet 1,CS[G(↑↓)⋯NO+], and triplet 3[G•+(↑)⋯(↑)•NO]. In this study, the reactions of •NO with both unsubstituted guanine radical cations (in the 9HG•+ conformation) and 9-methylguanine radical cations (9MG•+, a guanosine-mimicking model compound) were investigated in the absence and presence of monohydration of radical cations. Kinetic-energy dependent reaction product ions and cross sections were measured using an electrospray ionization guided-ion beam tandem mass spectrometer. The reaction mechanisms, kinetics, and dynamics were comprehended by interpreting the reaction potential energy surface using spin-projected density functional theory, coupled cluster theory, and multiconfiguration complete active space second-order perturbation theory, followed by RRKM kinetics modeling. The combined experimental and computational findings revealed closed-shell singlet 1,CS[7-NO-9MG]+ as the major, exothermic product and triplet 3[8-NO-9MG]+ as the minor, endothermic product. Singlet biradical products were not detected due to high reaction endothermicities, activation barriers, and inherent instability.more » « less
An official website of the United States government
