- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Darzi, Saleh (1)
-
Sedghighadikolaei, Kiarash (1)
-
Yavuz, Attila A (1)
-
Yavuz, Attila Altay (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Large-scale next-generation networked systems like smart grids and vehicular networks facilitate extensive automation and autonomy through real-time communication of sensitive messages. Digital signatures are vital for such applications since they offer scalable broadcast authentication with non-repudiation. Yet, even conventional secure signatures (e.g., ECDSA, RSA) introduce significant cryptographic delays that can disrupt the safety of such delay-aware systems. With the rise of quantum computers breaking conventional intractability problems, these traditional cryptosystems must be replaced with post-quantum (PQ) secure ones. However, PQ-secure signatures are significantly costlier than their conventional counterparts, vastly exacerbating delay hurdles for real-time applications. We propose a new signature called Time Valid Probabilistic Data Structure HORS (TVPD-HORS) that achieves significantly lower end-to-end delay with a tunable PQ-security for real-time applications. We harness special probabilistic data structures as an efficient one-way function at the heart of our novelty, thereby vastly fastening HORS as a primitive for NIST PQ cryptography standards. TVPD-HORS permits tunable and fast processing for varying input sizes via One-hash Bloom Filter, excelling in time-valid cases, wherein authentication with shorter security parameters is used for short-lived yet safety-critical messages. We show that TVPD-HORS verification is 2.7× and 5× faster than HORS in high-security and time-valid settings, respectively. TVPD-HORS key generation is also faster, with a similar signing speed to HORS. Moreover, TVPD-HORS can increase the speed of HORS variants over a magnitude of time. These features make TVPD-HORS an ideal primitive to raise high-speed time-valid versions of PQ-safe standards like XMSS and SPHINCS+, paving the way for real-time authentication of next-generation networks.more » « less
-
Darzi, Saleh; Yavuz, Attila Altay (, IEEE)As network services progress and mobile and IoT environments expand, numerous security concerns have surfaced for spectrum access systems (SASs). The omnipresent risk of Denial-of-Service (DoS) attacks and raising concerns about user privacy (e.g., location privacy, anonymity) are among such cyber threats. These security and privacy risks increase due to the threat of quantum computers that can compromise longterm security by circumventing conventional cryptosystems and increasing the cost of countermeasures. While some defense mechanisms exist against these threats in isolation, there is a significant gap in the state of the art on a holistic solution against DoS attacks with privacy and anonymity for spectrum management systems, especially when post-quantum (PQ) security is in mind. In this paper, we propose a new cybersecurity framework, PACDoSQ, which is the first to offer location privacy and anonymity for spectrum management with counter DoS and PQ security simultaneously. Our solution introduces the private spectrum bastion concept to exploit existing architectural features of SASs and then synergizes them with multi-server private information retrieval and PQ-secure Tor to guarantee a location-private and anonymous acquisition of spectrum information, together with hash-based client-server puzzles for counter DoS. We prove that PACDoSQ achieves its security objectives and show its feasibility via a comprehensive performance evaluation.more » « less
An official website of the United States government
