skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2350230

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shared memory system-on-chips (SM-SoCs) are ubiquitously employed by a wide range of computing platforms, including edge/IoT devices, autonomous systems, and smartphones. In SM-SoCs, system-wide shared memory enables a convenient and cost-effective mechanism for making data accessible across dozens of processing units (PUs), such as CPU cores and domain-specific accelerators. Due to the diverse computational characteristics of the PUs they embed, SM-SoCs often do not employ a shared last-level cache (LLC). Although covert channel attacks have been widely studied in shared memory systems, high-throughput communication has previously been feasible only by relying on an LLC or by possessing privileged or physical access to the shared memory subsystem. In this study, we introduce a new memory-contention-based covert communication attack, MC3, which specifically targets shared system memory in mobile SoCs. Unlike existing attacks, our approach achieves high-throughput communication without the need for an LLC or elevated access to the system. We explore the effectiveness of our methodology by demonstrating the trade-off between the channel transmission rate and the robustness of the communication. We evaluate MC3 on NVIDIA Orin AGX, NX, and Nano platforms and achieve transmission rates up to 6.4 Kbps with less than 1% error rate. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026