skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2400087

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cooperative catalysis with an enzyme and a small‐molecule photocatalyst has recently emerged as a potentially general activation mode to advance novel biocatalytic reactions with synthetic utility. Herein, we report cooperative photobiocatalysis involving an engineered nonheme Fe enzyme and a tailored photoredox catalyst to achieve enantioconvergent decarboxylative azidation, thiocyanation, and isocyanation of redox‐active esters via a radical mechanism. We repurposed and further evolved metapyrocatechase (MPC), a nonheme Fe extradiol dioxygenase not previously studied in new‐to‐nature biocatalysis, for the enantioselective C─N3, C─SCN, and C─NCO bond formation via an enzymatic Fe─X intermediate (X═N3, NCS, and NCO). A range of primary, secondary, and tertiary alkyl radical precursors were effectively converted by our engineered MPC, allowing the syntheses of organic azides, thiocyanates, and isocyanates with good to excellent enantiocontrol. Further derivatization of these products furnished valuable compounds including enantioenriched amines, triazoles, ureas, and SCF3‐containing products. DFT and MD simulations shed light on the mechanism as well as the binding poses of the alkyl radical intermediate in the enzyme active site and the π‐facial selectivity in the enantiodetermining radical rebound. Overall, cooperative photometallobiocatalysis with nonheme Fe enzymes provides a means to develop challenging asymmetric radical transformations eluding small‐molecule catalysis. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available July 8, 2026
  3. Free, publicly-accessible full text available April 9, 2026