skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2400727

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the landscape of molecular photocatalysis is vital to enable efficient conversion of feedstock molecules to targeted products and inhibit off-cycle reactivity. In this study, the light-promoted reactivity of [RuCp*2]+ was explored via electronic structure, photophysical, and photostability studies and the reactivity of [RuCp*2]+ within a photocatalytic hydrogen evolution cycle was assessed. TD-DFT calculations support the assignment of a low-energy ligand-to-metal charge transfer transition (LMCT) centered at 500 nm, where an electron from a ligand-based orbital delocalized across both Cp* ligands is promoted to a dx2–y2-based β-LUMO orbital. Upon irradiating the LMCT absorption feature, ultrafast transient absorption spectroscopy measurements show that an initial excited state (τ1 = 1.3 ± 0.1 ps) is populated, which undergoes fast relaxation to a longer-lived state (τ2 = 12.0 ± 0.9 ps), either via internal conversion or vibrational relaxation. Despite the short-lived nature of these excited states, bulk photolysis of [RuCp*2]+ demonstrates that photochemical conversion to decomposition products is possible upon prolonged illumination. Collectively, these studies reveal that [RuCp*2]+ undergoes light-driven decomposition, highlighting the necessity to construct molecular photocatalytic systems resistant to off-cycle reactivity in both the ground and excited states. 
    more » « less
    Free, publicly-accessible full text available February 13, 2026