skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2402116

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ocean tide generated magnetic fields contain information about changes in ocean heat content and transport that can potentially be retrieved from remotely sensed magnetic data. To provide an important baseline towards developing this potential, tidal signals are extracted from 288 land geomagnetic observatory records having observations within the 50-year time span 1965–2015. The extraction method uses robust iteratively reweighted least squares for a range of models using different predictant and predictor assumptions. The predictants are the time series of the three vector components at each observatory, with versional variations in data selection and processing. The predictors fall into two categories: one using time-harmonic bases and the other that directly use lunar and solar ephemerides with gravitational theory to describe the tidal forces. The ephemerides predictors are shown to perform better (fitting more variance with fewer predictors) than do the time-harmonic predictors, which include the traditional ‘Chapman–Miller method’. In fitting the oceanic lunar tidal signals, the predictants with the highest signal/noise involve the ‘vertical’ magnetic vector component following principle-component rotation. The best simple semidiurnal predictor is the ephemeris series of lunar azimuth weighted by the inverse-cubed lunar distance. More variance is fitted with predictors representing the lunar tidal potential and gradients calculated for each location/time. 
    more » « less
  2. Oceanic tidal constituents and depth-integrated electrical conductivity (ocean conductivity content, or OCC) extracted from electromagnetic (EM) field data are known to have a strong potential for monitoring ocean heat content, which reflects the Earth’s energy imbalance. In comparison to ocean tide models, realistic ocean general circulation models have a greater need to be baroclinic; therefore, both OCC and depth-integrated conductivity-weighted velocity 𝐓𝛔 data are required to calculate the ocean circulation-induced magnetic field (OCIMF). Owing to a lack of 𝐓𝛔 observations, we calculate the OCIMF using an ocean state estimate. There are significant trends in the OCIMF primarily owing to responses in the velocities to external forcings and the warming influence on OCC between 1993 and 2017, particularly in the Southern Ocean. Despite being depth-integrated quantities, OCC and 𝐓𝛔 (which primarily determine the OCIMF in an idealized EM model) can provide a strong constraint on the baroclinic velocities and ocean mixing parameters when assimilated into an ocean state estimation framework. A hypothetical fleet of full-depth EM-capable floats would therefore help improve the accuracy of the OCIMF computed with an ocean state estimate, which could potentially provide valuable guidance on how to extract the OCIMF from satellite magnetometry observations. 
    more » « less